The binding of Candida albicans yeast cells to human fibronectin (Fn), a major glycoprotein of mammalian cells, was studied using an in vitro assay. Adherence was quantitated in microtiter dishes coated with Fn to which radiolabeled yeast cells were added. Under optimum conditions of the assay, i.e., 1 mM CaCl2 and 70 micrograms Fn protein, approximately 40% of the radiolabeled yeast cells adhered to the Fn. Adherence to Fn was greater at 30 degrees C than at 4 degrees C and was greater with viable yeast cells than with heat-killed cells. Candida albicans (two strains) and C. tropicalis adhered to Fn to a greater extent than C. pseudotropicalis, C. krusei, or Saccharomyces cerevisiae. Pretreatment of C. albicans with chymotrypsin, pronase, or papain, but not pepsin, decreased adherence to Fn. Blocking experiments using mannan, sugars, or amino sugars were carried out by preabsorbing the Fn with each of the above-mentioned compounds. Candida mannan blocked adherence of C. albicans to Fn. The mannan effect was dose dependent. However, adherence of C. albicans to Fn was not significantly reduced by mannose, glucose, or several other sugars. The role of FN as a receptor for the binding of C. albicans yeast cells to buccal and vaginal epithelial cells was investigated also using an in vitro assay. We determined, using indirect fluorescent antibody techniques, that both buccal and vaginal epithelial cells possessed Fn. In addition, yeast cells, when pretreated with Fn, showed reduced adherence with buccal and vaginal cells when compared with nontreated cells. These studies may indicate a role for Fn in the adherence of C. albicans to buccal and vaginal epithelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/m84-033 | DOI Listing |
Sci Rep
January 2025
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain.
View Article and Find Full Text PDFSci Rep
January 2025
Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt.
Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.
View Article and Find Full Text PDFMol Cell
January 2025
Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
In this issue of Molecular Cell, studies by Xu et al., Kimble et al., and Elango et al.
View Article and Find Full Text PDFSci Adv
January 2025
MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!