Insulin stimulates a kinase that phosphorylates tyrosines in the insulin receptor; this kinase is tightly associated with the insulin receptor itself. We now show that the insulin-stimulated casein kinase, present in solubilized, lectin-purified receptor preparations from rat liver, is indistinguishable from the insulin receptor kinase. As with phosphorylation of the insulin receptor, insulin selectively enhanced by 2-3-fold the phosphorylation of tyrosines in casein. The insulin-stimulated activities of both kinases were inactivated at 37 degrees C with the same t0.5 of 5 min and were identically affected by alkylating agents. Both receptor and casein kinase activities were specifically coprecipitated by anti-receptor antibodies or by insulin and anti-insulin antibodies. When the latter type of immune complexes were incubated with an excess of insulin, both kinase activities were quantitatively recovered. We therefore conclude that insulin-stimulated receptor and casein phosphorylations are probably catalyzed by a single enzyme which is tightly associated with the receptor itself. Now, by replacing casein for receptor as substrate, it is possible to measure the enzymatic activity of this receptor-related kinase itself, i.e. independent of the receptor as substrate. Detection of this activity is improved in the presence of certain alkylating agents. Use of artificial substrates (in combination with alkylating agents) is particularly important to dissect the functional components of the receptor complex, to study mechanisms of enzyme regulation and especially in situations where the available receptor for study is limited, e.g. fresh or cultured cells from patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1983.tb07872.x | DOI Listing |
Juntendo Iji Zasshi
December 2024
Diabetes mellitus, characterized by high blood glucose due to inadequate insulin action, comprises two main types: type 1, an autoimmune disease, and type 2, marked by insulin resistance. This review provides a comprehensive overview of diabetes management and treatment advancements. Effective diabetes management includes maintaining blood glucose levels within normal ranges and monitoring HbA1c, a marker reflecting average glucose levels over the past few months.
View Article and Find Full Text PDFRev Endocr Metab Disord
January 2025
Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
This review focuses on our current understanding of how growth hormone releasing hormone (GHRH): 1) stimulates GH release and synthesis from pituitary growth hormone (GH)-producing cells (somatotropes), 2) drives somatotrope proliferation, 3) is negatively regulated by somatostatin (SST), GH and IGF1, 4) is altered throughout lifespan and in response to metabolic challenges, and 5) analogues can be used clinically to treat conditions of GH excess or deficiency. Although a large body of early work provides an underpinning for our current understanding of GHRH, this review specifically highlights more recent work that was made possible by state-of-the-art analytical tools, receptor-specific agonists and antagonists, high-resolution in vivo and ex vivo imaging and the development of tissue (cell) -specific ablation mouse models, to paint a more detailed picture of the regulation and actions of GHRH.
View Article and Find Full Text PDFInt J Obes (Lond)
January 2025
Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, 27101, USA.
Previous studies have identified G protein-coupled receptor (GPCR) kinase 5 (GRK5) as a genetic factor contributing to obesity pathogenesis, but the underlying mechanism remains unclear. We demonstrate here that Grk5 mRNA is more abundant in stromal vascular fractions of mouse white adipose tissue, the fraction that contains adipose progenitor cells, or committed preadipocytes, than in adipocyte fractions. Thus, we generated a GRK5 knockout (KO) 3T3-L1 preadipocyte to further investigate the mechanistic role of GRK5 in regulating adipocyte differentiation.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Biology, Duke University, Durham, NC 27708, USA.
Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms.
View Article and Find Full Text PDFElife
January 2025
The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.
encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!