Kinetics and magnitudes of changes in Indium-labeled platelet biodistribution were studied in dogs given E. coli endotoxin. Marked, reversible, dose-dependent shifts of platelets from blood to lung and apparently irreversible shifts to liver were demonstrated. These were contemporaneous with alterations in blood gases and in pulmonary and systemic hemodynamics. Morphologic studies revealed atelectasis, sequestration of leukocytes and platelets in the lungs, and mild interstitial pulmonary edema. This study provides in vivo quantification of labeled platelet response to a specific stimulus, and illustrates a method that could be applied to more extensive study of blood element participation in acute lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004424-198309000-00005DOI Listing

Publication Analysis

Top Keywords

platelet kinetics
4
kinetics biodistribution
4
biodistribution canine
4
canine endotoxemia
4
endotoxemia kinetics
4
kinetics magnitudes
4
magnitudes changes
4
changes indium-labeled
4
indium-labeled platelet
4
platelet biodistribution
4

Similar Publications

Impact of hyper- and hypothermia on cellular and whole-body physiology.

J Intensive Care

January 2025

Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.

The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

The medial ulnar collateral ligament of the elbow is the primary stabilizer against valgus load. It can tear acutely or through attritional damage as in repetitive overhead sports. Although baseball players, particularly pitchers, are the most vulnerable athletes, these injuries also occur in contact athletes, gymnasts, and javelin throwers.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation is challenging for patients with transfusion-dependent thalassemia who have experienced iron overload and received chronic transfusion support. A transplantation strategy including a reduced-intensity preparative regimen and tailored immunosuppression to support donor engraftment and prevent graft-versus-host disease (GVHD) was developed for this population. The combination of a pretransplantation immunosuppression phase with reduced dosing of fludarabine/prednisone, a treosulfan-based preparative regimen with reduced cyclophosphamide dosing, and introduction of a calcineurin/methotrexate-free GVHD prophylaxis/engraftment supporting regimen with abatacept/sirolimus/antithymocyte globulin was tested.

View Article and Find Full Text PDF

Brexucabtagene autoleucel (brexu-cel) has revolutionized the treatment of patients affected by mantle cell lymphomas. In this prospective, observational multicentre study, we evaluated 106 patients, with longitudinal brexu-cel kinetics in peripheral blood monitored in 61 of them. Clinical outcomes and toxicities are consistent with previous real-world evidence studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!