DNA-protein complexes have been isolated from HeLa cell nuclei and nuclear matrix preparations. Two proteins, 55 and 66 kilodaltons in size, remain bound to HeLa DNA after treatment at 80 degrees C in 2% sodium dodecyl sulfate and purification by exclusion chromatography on Sepharose 2B-CL in the presence of 0.3% sodium dodecyl sulfate. These proteins appear to be tightly bound but not covalently linked to the DNA, and they are distributed over the DNA with an average spacing of 40 kilobase pairs. This spacing distribution remains essentially constant throughout the cell cycle. The proteins are bound to the residual 2% of HeLa cell DNA which remains attached to the nuclear matrix after extensive nuclease digestion, a condition which reduces the average size of the DNA to approximately 150 base pairs. Our results suggest that these tightly bound proteins are involved in anchoring cellular DNA to the nuclear matrix. These tightly bound proteins are identical by partial peptide mapping to proteins found tightly bound to the DNA of mammalian, plant, and bacterial cells (D. Werner and C. Petzelt, J. Mol. Biol. 150:297-302, 1981), implying that these proteins are involved in the organization of chromosomal domains and are highly conserved in both procaryotic and eucaryotic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC370010PMC
http://dx.doi.org/10.1128/mcb.3.9.1567-1579.1983DOI Listing

Publication Analysis

Top Keywords

tightly bound
20
nuclear matrix
16
hela cell
12
proteins
8
proteins tightly
8
bound hela
8
dna
8
cell dna
8
dna nuclear
8
sodium dodecyl
8

Similar Publications

Background: Neurodegenerative diseases are a group of disorders characterized by progressive neuronal degeneration and death, of which Alzheimer's disease and Parkinson's disease are the most common. These diseases are closely associated with increased expression of monoamine oxidase B (MAO-B), an important enzyme that regulates neurotransmitter concentration, and its overactivity leads to oxidative stress and neurotoxicity, accelerating the progression of neurodegenerative diseases. Therefore, the development of effective MAO-B inhibitors is important for the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Structure and catalytic activity of a dihydrofolate reductase-like enzyme from Leptospira interrogans.

Int J Biol Macromol

January 2025

Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

A dihydrofolate reductase (DHFR)-like enzyme from Leptospira interrogans (LiDHFRL) was cloned and the recombinant protein was characterized. Sequence alignment suggested that the enzyme lacked the conserved catalytic residues found in DHFR. Indeed, LiDHFRL did not catalyze the reduction of dihydrofolate by either NADH or NADPH.

View Article and Find Full Text PDF

Interaction of starch nanoparticles with digestive enzymes and its effect on the release of polyphenols in simulated gastrointestinal fluids.

Food Chem

January 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China. Electronic address:

This study investigates the interaction of amino-modified starch nanoparticles (NH-SNPs) and unmodified SNPs with pepsin and trypsin and the influence of the formation of protein coronas on the release of polyphenols. We discovered that NH-SNPs bound loosely to pepsin, while they bound tightly to trypsin, by quartz crystal microbalance with dissipation monitoring and zeta potential measurement. SNPs did not easily bind to the two digestive enzymes.

View Article and Find Full Text PDF

Liver fatty acid binding protein FABP1 transfers substrates to cytochrome P450 4A11 for catalysis.

J Biol Chem

January 2025

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States. Electronic address:

Cytochrome P450 (P450) 4A11 is a human P450 family 4 ω-oxidase that selectively catalyzes the hydroxylation of the terminal methyl group of fatty acids. Cytosolic lipids are the substrates for the enzyme but are considered to be primarily bound in cells by liver fatty acid binding protein (FABP1). Lipid binding to recombinant FABP1 with a fluorophore displacement assay showed substantial preference of FABP1 for ≥16-carbon fatty acids (K < 70 nM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!