Recent events clearly establish that petroleum can no longer be relied upon as a stable, economical raw material for energy and industrial chemicals. Plant biomass is currently being evaluated as a desirable alternative raw material to petroleum because of renewability and abundance. The most abundant form of biomass on the planet earth is lignocellulose which is composed of cellulose, hemicellulose, and lignin. An estimated 4 X 10(9) tons per year of cellulose alone is readily available for conversion to energy or feedstuffs. This article explores the current state of research on the transformation of cellulose, hemi-cellulose, and lignin by various microorganisms and the subsequent production of fuels and chemicals. Current research activities are covered including technologies available for the utilization of biomass, chemicals from fermentation processes, conversion of biomass to sugar, direct bioconversion to liquid fuels.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10408418209113563DOI Listing

Publication Analysis

Top Keywords

raw material
8
biomass
5
biomass conversion
4
conversion fermentation
4
chemicals
4
fermentation chemicals
4
chemicals fuels
4
fuels events
4
events clearly
4
clearly establish
4

Similar Publications

Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.

View Article and Find Full Text PDF

Selective sensing of terbinafine hydrochloride using carbon-based electrodes: a green and sustainable electroanalytical method for pharmaceutical products.

Anal Methods

January 2025

ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.

Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.

View Article and Find Full Text PDF

We propose an effective method for selectively extracting the valuable metals from the spent LiNiCoMnO cathode material using an oxalic acid-based deep eutectic solvent. Through regulation of the coordination environment, NiO, CoO, and MnO are stepwise separated and further applied in the electrochemical conversion of raw PET bottles to high-purity formic acid.

View Article and Find Full Text PDF

Background: Meat is a good source of protein in the human diet, and more than three-quarters of the world's population consumes it. It is the most perishable food item since it has enough nutrients to enable microbial growth. In underdeveloped nations, animals are routinely slaughtered and sold in unsanitary conditions, compromising the bacteriological quality and safety of the meat received from the animals.

View Article and Find Full Text PDF

Objective: Dimensionality reduction techniques aim to enhance the performance of machine learning (ML) models by reducing noise and mitigating overfitting. We sought to compare the effect of different dimensionality reduction methods for comorbidity features extracted from electronic health records (EHRs) on the performance of ML models for predicting the development of various sub-phenotypes in children with Neurofibromatosis type 1 (NF1).

Materials And Methods: EHR-derived data from pediatric subjects with a confirmed clinical diagnosis of NF1 were used to create 10 unique comorbidities code-derived feature sets by incorporating dimensionality reduction techniques using raw International Classification of Diseases codes, Clinical Classifications Software Refined, and Phecode mapping schemes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!