M13 DNA containing 20-30 apurinic/apyrimidinic (AP) sites per intact circular molecule was prepared by growing phage on an ung- dut- Escherichia coli mutant and treating the DNA with uracil N-glycosylase. AP sites obstruct in vitro DNA synthesis catalyzed by E. coli pol I. The position at which termination of synthesis occurs was determined for four enzymes. T4 DNA polymerase terminates one nucleotide before putative AP sites. DNA pol I, AMV reverse transcriptase, and DNA polymerase alpha terminate synthesis either before or at the site of an AP lesion depending on the particular sequence. We determined the identity of the nucleotide inserted opposite an AP site by synthesizing up to the lesion in a first-stage reaction using T4 DNA polymerase and then determining elongation in a second stage. Purines are inserted opposite AP sites more readily than pyrimidines, and dATP is more efficient than dGTP in promoting such elongation. The DNA-dependent conversion of dNTP to dNMP was determined in mixtures of all four dNTP's by using AP DNA. The production of dAMP from dATP occurs most readily. We conclude that there is an inherent specificity for the incorporation of adenine nucleotides opposite AP sites in this in vitro system. Insofar as the model system reflects in vivo mutational events, our data suggest that depurination should produce transversions and depyrimidination should produce transitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00288a026 | DOI Listing |
Mol Cancer Ther
January 2025
Tango Therapeutics (United States), Boston, United States.
Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on poly(ADP-ribose) polymerase (PARP) inhibitors, which are subject to high rates of innate or acquired resistance in patients. Here, we used CRISPR/Cas9-based screening to identify DNA Ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1-mutant cells across a variety of breast and ovarian cancer cell lines.
View Article and Find Full Text PDFelements are primate-specific retrotransposon sequences that comprise ∼11% of human genomic DNA. sequences contain an internal RNA polymerase III promoter and the resultant RNA transcripts mobilize by a replicative process termed retrotransposition. retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p).
View Article and Find Full Text PDFChina CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.
Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.
Ther Adv Infect Dis
January 2025
Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
Background: Human herpesvirus-8 (HHV8) can present with cutaneous or extracutaneous manifestations. While violaceous skin lesions characterize cutaneous Kaposi sarcoma, extracutaneous HHV8 is challenging to diagnose due to nonspecific symptoms.
Objectives: We evaluated the role of microbial cell-free DNA next-generation sequencing (mcfDNA NGS) in diagnosing HHV8-related illness.
ACS Omega
January 2025
Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.
The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!