In 51 patients with alcohol-induced liver injury glucose tolerance and insulin incretion were followed under alcohol abstinence over a period of 4 weeks. In 63% of the cases a pathologic glucose tolerance was found at the beginning. After 4 weeks, when the biochemical liver parameter had become normal, glucose tolerance also returned to normal. The serum insulin levels, in contrast, did not develop any changes. Thus, glucose tolerance improved under unchanged absolute insulin concentrations. From these results, we suggest an insulin resistance in cases of active alcoholic liver injury being reversible under the improvement of liver function during alcohol abstinence.

Download full-text PDF

Source

Publication Analysis

Top Keywords

glucose tolerance
16
liver injury
8
alcohol abstinence
8
[glucose tolerance
4
tolerance alcoholic
4
alcoholic hepatitis
4
hepatitis studies
4
studies preceding
4
preceding alcohol
4
alcohol abstinence]
4

Similar Publications

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

Background: There is increasing need for effective incorporation of high-dimensional genetics data from individuals with varied ancestry in genome-wide association (GWAS) analyses. Classically, multi-ancestry GWAS analyses are performed using statistical meta-analysis to combine results conducted within homogeneous ancestry groups. The emergence of cosmopolitan reference panels makes collective preprocessing of GWAS data possible, but impact on downstream GWAS results in a mega-analysis framework merits investigation.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Purpose: Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study.

View Article and Find Full Text PDF

Arv1; a "Mover and Shaker" of Subcellular Lipids.

Contact (Thousand Oaks)

January 2025

Department of Biology, Barnard College at Columbia University, 3009 Broadway, New York, NY 10023, USA.

The composition of eukaryotic membranes reflects a varied but precise amalgam of lipids. The genetic underpinning of how such diversity is achieved or maintained is surprisingly obscure, despite its clear metabolic and pathophysiological impact. The Arv1 protein is represented in all eukaryotes and was initially identified in the model eukaryote as a candidate transporter of lipids from the endoplasmic reticulum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!