In order to elucidate further the effects of starvation on islet metabolism and insulin release, pancreatic islets of mice were isolated and incubated in the presence of various nutrient secretagogues. Starvation for 60 h completely blocked the insulin release in response to either 16.7 mM glucose or 10 mM leucine. The further addition of 20 mM adenosine partly restored the insulin response. Glucose, adenosine, glucose + adenosine, glucose + leucine or leucine + adenosine all increased the NADH/NAD ratios over basal values in islets from both fed and starved mice. No effects of starvation were observed on islet NADH/NAD ratios in any of the above media, but when islets of starved animals were incubated in the absence of any metabolic substrates the NADH/NAD ratios were decreased. In the absence of exogenous substrates the respiratory rate was also lower in islets from starved animals. Respiratory stimulation evoked by either 16.7 mM glucose or 10 mM leucine + 10 mM glutamine was lower after starvation, whereas glucose + adenosine, glucose + leucine and adenosine all induced normal respiratory responses. No differences between the 45Ca2+ uptake of islets from either starved or fed mice were observed under any conditions. It is concluded that, in starvation, a dissociation between islet insulin release and metabolism (measured as NADH/NAD ratios, oxygen consumption and 45Ca2+ uptake) may exist in the presence of certain nutrient secretagogues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0303-7207(83)90200-9DOI Listing

Publication Analysis

Top Keywords

glucose leucine
20
nadh/nad ratios
20
insulin release
16
leucine adenosine
12
glucose adenosine
12
adenosine glucose
12
islets starved
12
ratios oxygen
8
oxygen consumption
8
fed starved
8

Similar Publications

LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK.

Mol Metab

January 2025

Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:

Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo.

View Article and Find Full Text PDF

Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.

View Article and Find Full Text PDF

Impact of NPK fertilization on the metabolomic profile and nutritional quality of Portulaca oleracea L. using nuclear magnetic resonance analysis.

Plant Physiol Biochem

December 2024

Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, Ciudad de México, Mexico.

Purslane is a plant with high nutritional content that is mainly produced in the central part of Mexico. The nutritional content of purslane depends on various factors such as climatic and soil conditions, phenology, and fertilization. This article describes the H NMR metabolomics profiling of purslane in relation to fertilization at two harvest stages: C and C (27 and 42 days after emergence).

View Article and Find Full Text PDF

Brevetoxins are a type of neurotoxin produced in red tide blooms. Northern quahogs () are extensively used in commercial aquaculture farming, and early-stage metabolomics studies can provide early warnings of brevetoxins for farmers. In this study, NMR-based metabolomics was performed to investigate the response of clam gills and digestive glands under a series of sublethal doses of brevetoxins.

View Article and Find Full Text PDF

Schisandra sphenanthera extract modulates sweet taste receptor pathway, IRS/PI3K, AMPK/mTOR pathway and endogenous metabolites against T2DM.

Phytomedicine

December 2024

School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China. Electronic address:

Article Synopsis
  • Schisandra sphenanthera, a fruit used in traditional medicine, is reported to have beneficial effects on diabetes mellitus (DM) by helping with symptoms like prolonged cough and thirst and may aid in diabetes prevention and control.
  • The research aims to uncover how Schisandra Sphenanthera (SDP) works against type 2 diabetes mellitus (T2DM) through various scientific methods like biochemical analysis and metabolite assays.
  • Findings reveal that SDP can lower blood glucose levels, improve metabolic functions, and activate specific signaling pathways, ultimately leading to therapeutic effects on T2DM and restoring damage in organs like the liver and pancreas.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!