Magnesium, the most abundant intracellular divalent cation, is an essential cofactor for many enzyme systems, but it remains unknown as to whether variations in the cytoplasmic concentration of ionized Mg2+ directly control cellular processes. Experiments with adrenal medullary cells made 'leaky' by exposure to high electric fields provided evidence that Mg2+ could influence hormone release not only by competing with Ca2+ for entry into the cell, but also at intracellular sites controlling exocytosis. A similar conclusion was reached for insulin release in a study using isolated rat islets also subjected to high voltage discharges. There is no experimental evidence, however, that physiological stimuli influence Mg2+ movements in intact secretory cells. We report here that 28Mg2+ fluxes in pancreatic islet cells are markedly modified by glucose, the physiological stimulus of insulin release, but not by its non-insulinotropic analogue, 3-O-methylglucose.

Download full-text PDF

Source
http://dx.doi.org/10.1038/301073a0DOI Listing

Publication Analysis

Top Keywords

fluxes pancreatic
8
pancreatic islet
8
islet cells
8
insulin release
8
glucose modulates
4
mg2+
4
modulates mg2+
4
mg2+ fluxes
4
cells
4
cells magnesium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!