Using Chinese hamster V79 cells in vitro a study has been made of the radiosensitizing properties of 4- or 5-nitroimidazoles substituted in the 2, 5 or 4 position with various halo, sulphur ether, sulphonamide, sulphonate, ether or nitro groups. Values of E17 (the one-electron reduction potential measured versus the normal hydrogen electrode at pH7) vary in the range -178 to -565 mV. All the compounds, with one exception, are more efficient radiosensitizers than would be predicted from their redox potentials, and the factor, C1.6/C1.6, by which a compound is more efficient has been calculated. The second-order rate constants, k2, for reaction of these nitroimidazoles with glutathione and/or dithiothreitol were determined. Within each class of nitroimidazole there is a trend for k2 to increase with increasing redox potential. However, there is no clear trend between k2 and C1.6/C1.6. The concentration required to cause a 50 per cent depletion of intracellular glutathione was determined for selected compounds, as was the ability of glutathione-S-transferase to catalyse reaction with thiols. These observations suggested that the relative thiol reactivity measured under chemically controlled conditions does not necessarily indicate thiol reactivity intracellularly. Studies using the MT tumour in mice showed that the high levels of radiosensitization seen in vitro could not be duplicated in vivo. This was attributed to thiol reactivity, resulting in low metabolic stability and rapid depletion of sensitizer in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09553008414551971 | DOI Listing |
Platelets
December 2025
Cyrus Tang Medical Institute, The Fourth Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
Recent studies have shown that anti-ERp5 antibodies inhibit platelet activation and thrombus formation; Moreover, ERp5-deficient platelets exhibit enhanced platelet reactivity via regulation of endoplasmic reticulum (ER) stress. In this study, we used a new ERp5-knockout mouse model as well as recombinant ERp5 (rERp5) protein, to examine the role of ERp5 in platelet function and thrombosis. Although platelet-specific ERp5-deficient mice had decreased platelet count, the mice had shortened tail-bleeding times and enhanced platelet accumulation in FeCl-induced mesenteric artery injury, compared with wild-type mice.
View Article and Find Full Text PDFActa Naturae
January 2024
St Petersburg University, St. Petersburg, 199034 Russian Federation.
Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK. Electronic address:
Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates defenses against oxidants and thiol-reactive electrophiles. It is controlled at the protein stability level by several E3 ubiquitin ligases (CRL3, CRL4, SCF, and Hrd1). CRL3 is of the greatest importance because it constitutively targets Nrf2 for proteasomal degradation under homeostatic conditions but is prevented from doing so by oxidative stressors.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFDalton Trans
January 2025
Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
A deeper understanding of the mechanisms underlying transition metal-catalyzed transformation is crucial for developing innovative strategies to synthesize chiral organoselenium compounds. In this study, we developed and investigated a three-layer chirality relay model for the rhodium-catalyzed asymmetric hydroselenation of alkenes through density functional theory (DFT) calculations. In the back layer of this model, the four bulky substituents on the phosphorus atom of the bidentate chiral MeO-BIPHEP ligand were positioned on axial and equatorial bonds, thereby influencing the configuration of the middle layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!