1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the gamma-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [gamma-S]ATP is 2.2 microM and for Na+ 4.2 mM at 22 degrees C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 microM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37 degrees C is only 1.13 mumol X (mg protein)-1 X h-1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0 degree C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5-6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s-1 vs. 180 s-1), spontaneous dethiophosphorylation (0.04 s-1 vs. 0.5 s-1) and K+-stimulated dethiophosphorylation (0.54 s-1 vs. 230 s-1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s-1, Km ADP = 48 microM at 0.1 mM ATP) and is relatively K+-insensitive. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75-90% in the ADP-sensitive E1-conformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(84)90302-xDOI Listing

Publication Analysis

Top Keywords

na+ k+-atpase
8
apparent rate
8
s-1
7
thiophosphorylation
6
na+
5
atp
5
thiophosphoenzyme
5
thiophosphorylation k+-atpase
4
k+-atpase yields
4
yields adp-sensitive
4

Similar Publications

Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.

View Article and Find Full Text PDF

Cytotoxic and Noncytotoxic Steroidal Constituents of .

J Nat Prod

January 2025

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

(-)-Cryptanoside A () was identified previously as a major cytotoxic component of the stems of collected in Laos, which mediates its activity by targeting Na/K-ATPase (NKA), with hydrogen bonds formed between its 11- and 4'-hydroxy groups and NKA being observed in its docking profile. In a continuing investigation, and its 17-epimer, (-)-17--cryptanoside A (), and the new (+)-2-hydroxyandrosta-4,6-diene-3-one-17-carboxylic acid () and the known (+)-2,21-dihydroxypregna-4,6-diene-3,20-dione or 2-hydroxy-6,7-didehydrocortexone () pregnane-type steroids were isolated from . In addition, (-)-11,4'-di--acetylcryptanoside A () has been synthesized from the acetylation of .

View Article and Find Full Text PDF

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.

View Article and Find Full Text PDF

Formation of epithelial polarity on the fluorinated-oil microdroplet surface by regulating cell adhesion.

J Biosci Bioeng

January 2025

Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Polarized epithelial cells are compartmentalized into apical and basement membranes with asymmetrically distributed proteins. This study aimed to establish a method for culturing epithelial cells at the fluorinated oil (Novec-7500) microdroplet surface for the formation of epithelial polarity, which is desirable for regenerative medicine and drug discovery research. Microdroplet surfaces treated with fibronectin, which regulates a variety of cell behaviors through direct interactions with cell surface integrin receptors, were prepared for culturing epithelial cells.

View Article and Find Full Text PDF

Objective: This study was undertaken to test the following hypotheses in the Atp1a3 mouse (which carries the most common human ATP1A3 (the major subunit of the neuronal Na/K-adenosine triphosphatase [ATPase]) mutation, D801N): sudden unexpected death in epilepsy (SUDEP) occurs during seizures and is due to terminal apneas in some and due to lethal cardiac arrhythmias in others; and Atp1a3 mice have central cardiorespiratory dysregulation and abnormal respiratory drive.

Methods: Comparison was made of littermate wild-type and Atp1a3 groups using (1) simultaneous in vivo video-telemetry recordings of electroencephalogram, electrocardiogram, and breathing; (2) whole-body plethysmography; and (3) hypoglossal nerve recordings.

Results: In Atp1a3 mice, (1) SUDEP consistently occurred during seizures that were more severe than preterminal seizures; (2) seizure clustering occurred in periods preceding SUDEP; (3) slowing of breathing rate (BR) and heart rate was observed preictally before preterminal and terminal seizures; and (4) the sequence during terminal seizures was as follows: bradypnea with bradycardia/cardiac arrhythmias, then terminal apnea, followed by terminal cardiac arrhythmias.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!