Morphine, beta-endorphin and [D-Ala2, D-Leu5] enkephalin administered intracerebroventricularly exerted a protective effect on electroconvulsive shock (ECS)-induced seizures in mice. This effect was reversed by intraperitoneal injections of naltrexone. The role of mu and delta receptors in ECS-induced convulsions is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0091-3057(84)90197-7DOI Listing

Publication Analysis

Top Keywords

opioid antagonism
4
antagonism electroshock-induced
4
electroshock-induced seizures
4
seizures morphine
4
morphine beta-endorphin
4
beta-endorphin [d-ala2
4
[d-ala2 d-leu5]
4
d-leu5] enkephalin
4
enkephalin administered
4
administered intracerebroventricularly
4

Similar Publications

Corticosteroid signaling plays a critical role in modulating the neural systems underlying reward and addiction, but the specific contributions of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the medial prefrontal cortex (mPFC) to opioid reward and dopaminergic plasticity remain unclear. Here, we investigated the effects of intra-mPFC injection of corticosteroid receptor ligand (corticosterone; CORT), glucocorticoid receptor antagonist (RU38486; RU), and mineralocorticoid receptor antagonist (spironolactone; SP) on morphine-induced conditioned place preference (CPP) and dopamine transporter (DAT) expression in the mPFC. Adult male Wistar rats received intra-mPFC injections of CORT, RU, SP, or their respective vehicles prior to morphine CPP conditioning.

View Article and Find Full Text PDF

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

Orvinol-based opioid receptor antagonist fluorinated at C(20)-pharmacophore.

Eur J Med Chem

February 2025

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, bld. 1, Moscow, 119334, Russia. Electronic address:

Thevinols and their 3-O-demethylated relatives, orvinols, are derivatives of the Diels-Alder adduct of natural alkaloid thebaine with methyl vinyl ketone. Taken together, thevinols and orvinols constitute an important family of opioid receptor (OR) ligands playing an important role in both the OR mediated antinociception and OR antagonism. Herein, we disclose for the first time the antagonist activity of the N-allyl substituted orvinol derivative fluorinated within the pharmacophore associated with C(20) and its surrounding.

View Article and Find Full Text PDF

Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids.

ACS Chem Neurosci

January 2025

Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Co-use of xylazine with opioids is a major health threat in the United States. However, a critical knowledge gap exists in the understanding of xylazine-induced pharmacological and pathological impact. Xylazine is mostly known as an agonist of α2-adrenergic receptors (α2-ARs), but its deleterious effects on humans cannot be fully reversed by the α2-AR antagonists, suggesting the possibility that xylazine targets receptors other than α2-ARs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!