The effects of gamma-aminobutyric acid (GABA) and related compounds were examined on longitudinal and circular muscle preparations isolated from oviducts of virgin rabbits. GABA and baclofen stimulated the spontaneous motility in each type of preparation, which action could not be antagonized by bicuculline, phentolamine, atropine or tetrodotoxin. Muscimol was virtually ineffective. Our results indicate the presence of GABAB receptors in the rabbit oviductal musculature which mediate the contractile response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-2999(84)90141-9DOI Listing

Publication Analysis

Top Keywords

gabab receptor-mediated
4
receptor-mediated stimulation
4
stimulation contractility
4
contractility isolated
4
isolated rabbit
4
rabbit oviduct
4
oviduct effects
4
effects gamma-aminobutyric
4
gamma-aminobutyric acid
4
acid gaba
4

Similar Publications

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

Modelling the effect of allopregnanolone on the resolution of spike-wave discharges.

J Comput Neurosci

December 2024

Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.

Article Synopsis
  • Childhood absence epilepsy (CAE) is a children's epilepsy that often resolves during adolescence, and this study investigates how the hormone allopregnanolone affects brain circuits involved in this disorder.
  • The research used a computational model of various brain neurons and found that allopregnanolone can help reduce spike-wave discharges linked to absence seizures, particularly in the thalamus.
  • The study suggests that the beneficial effects of allopregnanolone may vary among individuals based on their brain's connectivity and inhibition levels, paving the way for future research on remission in CAE patients.
View Article and Find Full Text PDF

In vivo dynamic tracking of cerebral chloride regulation using molecularly tailored liquid/liquid interfacial ultramicro iontronics.

Sci Adv

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Article Synopsis
  • Chloride ions play a crucial role in brain function and are linked to neurodegenerative diseases, but traditional methods for detecting them are ineffective due to their inactivity in electrochemical reactions.
  • A new technique using specially designed liquid/liquid interfacial ultramicro iontronics (L/L-UIs) allows for the real-time sensing of these chloride ions in living organisms by utilizing unique ionophores in a gel.
  • This method not only demonstrates the dynamic regulation of chloride ions in neurons influenced by GABA receptors but also opens up possibilities for tracking other important ions and molecules in the brain, aiding in research and treatment of various brain disorders.
View Article and Find Full Text PDF

The processing of rich synaptic information in the dentate gyrus (DG) relies on a diverse population of inhibitory GABAergic interneurons to regulate cellular and circuit activity, in a layer-specific manner. Metabotropic GABA-receptors (GABARs) provide powerful inhibition to the DG circuit, on timescales consistent with behavior and learning, but their role in controlling the activity of interneurons is poorly understood with respect to identified cell types. We hypothesize that GABARs display cell type-specific heterogeneity in signaling strength, which will have direct ramifications for signal processing in DG networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!