The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(84)90555-8 | DOI Listing |
Nagoya J Med Sci
November 2024
Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Adenylate cyclase family members have recently received attention as novel therapeutic targets. However, the significance of adenylate cyclase 9 (ADCY9) in breast cancer has not been elucidated. Here, we evaluated expression in breast cancer (BC) cell lines, and polymerase chain reaction array analysis was performed to determine the correlations between expression levels and 84 tumor-associated genes.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
College of Life Sciences, Anqing Normal University, Anqing 246133, China.
This study aimed to analyze the impact of single nucleotide polymorphism (SNP) of (encoding adenylate cyclase 3) on the outcome of high-intensity interval training (HIIT) on body composition and screen genetic markers sensitive to HIIT in Chinese Han youth. A total of 237 non-regular exercise Han college students were recruited in a 12-week HIIT program, attending sessions 3 times a week. Before and after the HIIT program, their body composition was measured.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.
A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Physiology, University of Murcia, 30120 Murcia, Spain.
Prostaglandins are naturally occurring local mediators that can participate in the modulation of the cardiovascular system through their interaction with Gs/Gi-coupled receptors in different tissues and cells, including platelets. Thrombin is one of the most important factors that regulates platelet reactivity and coagulation. Clinical trials have consistently shown that omega-3 fatty acid supplementation lowers the risk for cardiovascular mortality and morbidity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!