Following intranasal instillation of Sendai virus in newborn mice an extensive virus infection of respiratory epithelium and olfactory mucosa was observed by immunoperoxidase technique. Viral antigen appeared in olfactory nerves and in neurons of the trigeminal ganglia. Selective labeling of neurons in trigeminal ganglia was also seen after virus injection into the snout. This shows that respiratory infections may not be restricted to the respiratory mucosa but may also spread to peripheral ganglia after uptake of virus at axonal terminals and somatopetal axonal transfer to the nerve cell bodies. Following intracerebral injection into newborn mice viral antigen persisted in scattered neurons in the thalamus and mesencephalon after 24 weeks. The majority of the mice developed hydrocephalus, for which obliteration of the aqueduct seems to have been a major cause.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00697190 | DOI Listing |
Obstet Gynecol
January 2025
Children's Hospital Colorado, Aurora, Colorado; Vaccine Research and Development, Pfizer Inc, Pearl River, New York; the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, and Famcru, Department of Paediatrics and Child Health, University of Stellenbosch, and the Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Vaccines and Immunity Team, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, the Gambia; Institute for International Health Charité, Universitätsmedizin, Berlin, Germany; Vaccine Research and Development, Pfizer Ltd, Marlow, United Kingdom; Instituto de Maternidad y Ginecología Nuestra Señora de Las Mercedes, San Miguel de Tucumán, and iTrials-Hospital Militar Central and iTrials, Buenos Aires, Argentina; Clinical Research Prime, Idaho Falls, Idaho; Boeson Research, Missoula, Montana; Meridian Clinical Research, Hastings, Nebraska; Asian Hospital and Medical Center, Manila, the Philippines; Department of Pediatrics, Spaarne Gasthuis, Haarlem and Hoofddorp, the Department of Pediatrics, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, and the ReSViNET Foundation, Zeist, the Netherlands; Meilahti Vaccine Research Center MeVac, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; National Taiwan University Hospital, Taipei, Taiwan; the Department of Obstetrics and Gynecology, Sendai City Hospital, Sendai, Japan; Institute of Biomedical Sciences, University of Chile School of Medicine, Santiago, Chile; University of Otago and New Zealand Clinical Research, Christchurch, New Zealand; CHU Sainte-Justine, Montreal, Quebec, Canada; Hospital Moinhos de Vento and Pontifícia Universidade Católica RGS, Porto Alegre, Brazil; the Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Arké SMO S.A. de C.V., Mexico City, Mexico; University of Western Australia School of Medicine, Vaccine Trials Group, Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, and Perth Children's Hospital, Nedlands, Western Australia, and Vaccine Clinical Research, Pfizer Inc, Sydney, Australia; and Worldwide Safety, Pfizer Srl, Milan, Italy.
Objective: To evaluate descriptive efficacy data, exploratory immunogenicity data, and safety follow-up through study completion from the global, phase 3 MATISSE (Maternal Immunization Study for Safety and Efficacy) maternal vaccination trial of bivalent respiratory syncytial virus (RSV) prefusion F protein vaccine (RSVpreF).
Methods: MATISSE was a phase 3, randomized, double-blinded, placebo-controlled trial. Healthy pregnant participants aged 49 years or younger at 24-36 weeks of gestation were randomized (1:1) to receive a single RSVpreF 120 micrograms or placebo dose.
Sci Rep
December 2024
Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
CHAMP1 (chromosome alignment-maintaining phosphoprotein 1) plays a role in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The CHAMP1 gene is one of the genes mutated in individuals with intellectual disability. The majority of the mutations are premature termination codon (PTC) mutations, while missense mutations have also been reported.
View Article and Find Full Text PDFiScience
December 2024
Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, P.R. China.
Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.
View Article and Find Full Text PDFTrop Med Infect Dis
November 2024
Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
The COVID-19 pandemic has underscored the pivotal role of vaccines in mitigating the devastating impact of the virus. In Thailand, the vaccination campaign against SARS-CoV-2 began on 28 February 2021, initially prioritizing healthcare professionals before expanding into a nationwide effort on 7 June 2021. This study employs a mathematical model of COVID-19 transmission with vaccination to analyze the impact of Thailand's COVID-19 vaccination program from 1 March 2021 to 31 December 2022.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Chemistry, Brown University, Providence, RI, 02912, USA. Electronic address:
Thiyl radicals are important reactive sulfur species and can cause cis to trans isomerization on unsaturated fatty acids. However, biocompatible strategies for the controlled generation of thiyl radicals are still lacking. In this work, we report the study of a series of naphthacyl-derived thioethers as photo-triggered thiyl radical precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!