2',3'-Cyclic nucleotide 3'-phosphodiesterase activity was examined in brains and spinal cords of normal and myelin-deficient Wistar rats. While the activity in normal brains increased from 0.2 mumol/min/mg protein (units) at 6-10 days to 3.5 units at 25 days of postnatal age, the activity in the myelin-deficient rat remained at 0.2-0.3 units over the same period. In spinal cord, the normal activities were 5.7 and 10.9 units at 12 and 20 days, respectively, whereas they declined in the myelin-deficient rat from 1.06 to 0.79 units for the same age points. 5'-Nucleotidase activities in brain and spinal cord were normal in the myelin deficient rat at both ages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.1984.tb12770.x | DOI Listing |
Stem Cell Res Ther
August 2019
Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA.
Background: Oligodendrocytes are a type of glial cells that synthesize the myelin sheath around the axons and are critical for the nerve conduction in the CNS. Oligodendrocyte death and defects are the leading causes of several myelin disorders such as multiple sclerosis, progressive multifocal leukoencephalopathy, periventricular leukomalacia, and several leukodystrophies. Temporal activation of the Sonic Hedgehog (SHH) pathway is critical for the generation of oligodendrocyte progenitors, and their differentiation and maturation in the brain and spinal cord during embryonic development in mammals.
View Article and Find Full Text PDFPediatr Res
June 2018
Department of Neurology, University of Wisconsin, Madison, Wisconsin.
BackgroundPelizaeus Merzbacher disease (PMD) is a dysmyelinating disorder of the central nervous system caused by impaired differentiation of oligodendrocytes. This study was prompted by findings that antimuscarinic compounds enhance oligodendrocyte differentiation and remyelination in vitro. One of these compounds, clemastine fumarate, is licensed for treatment of allergic conditions.
View Article and Find Full Text PDFIntegr Mol Med
June 2016
Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA. Intellectual and Developmental Disabilities Research Center, Neuroscience Research Building, 635 Charles E. Young Drive South, Los Angeles, California 90095-7332, USA.
We previously showed that TSC1 (a combination of transferrin and IGF-1) is a potent inductor of myelinogenesis in myelin deficient rats and in demyelinated adult mice. More recently, we demonstrated that regeneration of oligodendrocyte progenitors and myelin are possible with a single dose of TSC1 in a mouse model of Premature birth. Here, using the same mouse model of perinatal white matter damage due to glutamate excitotoxicity (GME), we tested the hypothesis that regeneration of endogenous nestin-expressing neural progenitors improves the outcome of prematurity.
View Article and Find Full Text PDFJ Neurosci
May 2011
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
Energy production presents a formidable challenge to axons as their mitochondria are synthesized and degraded in neuronal cell bodies. To meet the energy demands of nerve conduction, small mitochondria are transported to and enriched at mitochondrial stationary sites located throughout the axon. In this study, we investigated whether size and motility of mitochondria in small myelinated CNS axons are differentially regulated at nodes, and whether mitochondrial distribution and motility are modulated by axonal electrical activity.
View Article and Find Full Text PDFComp Med
October 2010
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
Health problems in some animal models remain unexplained, rendering in vivo studies ethically challenging, especially when experimental animals are prone to sudden death. Over the last 3 decades, the myelin-deficient (md) rat, a strain with severe dysmyelination due to mutant proteolipid protein, has been key to important discoveries in mechanisms of myelination and glial cell biology. The usefulness of this mutant rat, however, has been limited by sudden death during the fourth week of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!