The Fe(CN)3-(6) oxidation of the crystallographically characterized [[3Fe-3S], [4Fe-4S]] ferredoxin I of Azotobacter vinelandii has been studied using absorption, circular dichroism, magnetic circular dichroism, and EPR spectroscopies. A paramagnetic intermediate is observed en route to Fe-S cluster-free apoprotein, possessing an anisotropic g approximately equal to 2 EPR signal, surviving to temperatures greater than 77 K. This species is shown to result from 3-electron oxidation of the [4Fe-4S] cluster, without modification of the [3Fe-3S] cluster. However, it does not give rise to observable paramagnetic magnetic circular dichroism in the visible-near UV spectral region and is therefore neither an oxidized HIPIP [4Fe-4S] cluster nor an oxidized [3Fe-3S] cluster. We identify the paramagnetic species as a cysteinyldisulfide radical formed on dissociation of an oxidized cysteinate and an oxidized sulfide ion from the [4Fe-4S] cluster. This conclusion is consistent with the observed reaction stoichiometry, the spectroscopic results obtained, known EPR spectra of disulfide radicals, and the reconstitution of the native [4Fe-4S] cluster by dithiothreitol alone. This reaction, earlier interpreted as a HIPIP-type oxidation, is a previously uncharacterized oxidation reaction of [4Fe-4S] clusters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC345410 | PMC |
http://dx.doi.org/10.1073/pnas.81.7.1931 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFThe [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
Escherichia coli expressing SrPlsAR from Selenomonas ruminantium produces plasmalogen, comprising almost 60% of the total phospholipid content under anaerobic conditions. Both plasmenylethanolamine and plasmenylglycerol were detected, and the major acyl aldehyde derived from sn-1 vinyl ether was C16:1. Plasmalogen synthesis is affected by mutations in ATP-binding sites and Cys expected to be involved in the formation of the [4Fe-4S] cluster.
View Article and Find Full Text PDFTwo aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany. Electronic address:
Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!