Choline acetyltransferase (CAT) activity of chick latissimus dorsii muscles was studied during embryonic development and at post-hatching states. CAT activity was always higher in anterior (ALD) than in posterior (PLD) muscles. At embryonic stages, chronic spinal cord stimulation at a low rhythm did not modify CAT activity in ALD nerve endings but caused a transient increase in PLD terminals. This increase in CAT activity seems to be related to an acceleration of neuronal maturation rather than to the occurrence of the multiple innervation that results from the central stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3940(83)90204-5DOI Listing

Publication Analysis

Top Keywords

cat activity
16
choline acetyltransferase
8
nerve endings
8
latissimus dorsii
8
dorsii muscles
8
chronic spinal
8
spinal cord
8
cord stimulation
8
activity
5
developmental change
4

Similar Publications

An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages.

Biol Direct

January 2025

Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Background: Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis.

Results: Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs).

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Serological evidence of Crimean-Congo haemorrhagic fever in domestic animals from eight regions of Namibia.

Acta Trop

January 2025

Dept. of Animal Medicine, Production and Health, University of Padova, Legnaro, viale dell'Università 16, 35020, Italy. Electronic address:

Crimean-Congo haemorrhagic fever (CCHF) is a viral zoonotic disease endemic to regions of Africa, the Balkans, the Middle East, and Asia, with increasing reports of cases in southern Europe. Human transmission occurs primarily through the bite of infected ticks and by body fluids from infected human. Crimean-Congo haemorrhagic fever virus (CCHFV) affects a broad host range, including both domestic and wild vertebrates.

View Article and Find Full Text PDF

Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.

View Article and Find Full Text PDF

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!