Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01148718DOI Listing

Publication Analysis

Top Keywords

multineuronal characteristics
4
characteristics brain
4
brain activation
4
activation extinction
4
extinction action
4
action indifferent
4
indifferent stimuli
4
multineuronal
1
brain
1
activation
1

Similar Publications

Membrane potential states gate synaptic consolidation in human neocortical tissue.

Nat Commun

December 2024

Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.

Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states.

View Article and Find Full Text PDF

Theta (θ) oscillations are one of the characteristic local field potentials (LFPs) in the hippocampus that emerge during spatial navigation, exploratory sniffing, and rapid eye movement sleep. LFPs are thought to summarize multineuronal events, including synaptic currents and action potentials. However, no in vivo study to date has directly interrelated θ oscillations with the membrane potentials (Vm) of multiple neurons, and it remains unclear whether LFPs can be predicted from multineuronal Vms.

View Article and Find Full Text PDF

Number sense, the ability to estimate numerosity, is observed in naïve animals, but how this cognitive function emerges in the brain remains unclear. Here, using an artificial deep neural network that models the ventral visual stream of the brain, we show that number-selective neurons can arise spontaneously, even in the complete absence of learning. We also show that the responses of these neurons can induce the abstract number sense, the ability to discriminate numerosity independent of low-level visual cues.

View Article and Find Full Text PDF

Humans perform remarkably well in many cognitive tasks including pattern recognition. However, the neuronal mechanisms underlying this process are not well understood. Nevertheless, artificial neural networks, inspired in brain circuits, have been designed and used to tackle spatio-temporal pattern recognition tasks.

View Article and Find Full Text PDF

In motor cortex, 2 types of deep layer pyramidal cells send their axons to other areas: intratelencephalic (IT)-type neurons specifically project bilaterally to the cerebral cortex and striatum, whereas neurons of the extratelencephalic (ET)-type, termed conventionally pyramidal tract-type, project ipsilaterally to the thalamus and other areas. Although they have totally different synaptic and membrane potential properties in vitro, little is known about the differences between them in ongoing spiking dynamics in vivo. We identified IT-type and ET-type neurons, as well as fast-spiking-type interneurons, using novel multineuronal analysis based on optogenetically evoked spike collision along their axons in behaving/resting rats expressing channelrhodopsin-2 (Multi-Linc method).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!