Group-directed hydrophobic modification of membrane-integrated protein segments by arylisothiocyanates is applied to bacteriorhodopsin. Labeling of purple membrane with phenylisothiocyanate and 4-N,N'-dimethylamino-azobenzene-4'-isothiocyanate results in covalent modification of a unique lysine epsilon-amino group of bacteriorhodopsin. Lysine residue 41, located in the amino-terminal chymotryptic fragment, has been identified as the arylisothiocyanate binding site by established sequencing techniques. The phenylisothiocyanate binding site is not accessible for the aqueously soluble analog p-sulfophenylisothiocyanate. Furthermore, the acid-induced bathochromic shift of the bound chromophore reagent is not observed following acidification of 4-N,N'-dimethylamino-azobenzene-4'-isothiocyanate-labeled purple membrane. The modification thus occurs in the hydrophobic membrane domain, providing further evidence for intramembraneous disposition of the modified protein segment. Light-induced proton translocation is preserved in reconstituted vesicles containing either phenylisothiocyanate-modified or 4-N,N'-dimethylamino-azobenzene-4'-isothiocyanate-modified bacteriorhodopsin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-2836(84)90405-4DOI Listing

Publication Analysis

Top Keywords

binding site
12
purple membrane
8
group-directed modification
4
bacteriorhodopsin
4
modification bacteriorhodopsin
4
bacteriorhodopsin arylisothiocyanates
4
arylisothiocyanates labeling
4
labeling identification
4
identification binding
4
site topology
4

Similar Publications

Virtual screening of potential inhibitors of the ATPase site in Acinetobacter baumannii DNA Gyrase.

Comput Biol Med

January 2025

Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, 54714, Mexico. Electronic address:

Bacterial resistance is a global public health problem because of the ineffectiveness of conventional antibiotics against super pathogens. To counter this situation, the search for or design of new molecules is essential to inhibit the key proteins involved in several stages of bacterial infection. One of these key proteins is DNA gyrase, which is responsible for packaging and unfolding of DNA chains during replication.

View Article and Find Full Text PDF

D-glucose-conjugated thioureas containing 2-aminopyrimidine as potential multitarget inhibitors for type 2 diabetes mellitus: Synthesis and biological activity study.

Comput Biol Med

January 2025

Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam.

α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC = 11.32 ± 0.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!