Influx experiments using the potassium tracer 86Rb+ indicated that the activity of the Na+K+ ATPase, or sodium pump, was reduced 40-50% as a consequence of Sindbis virus infection of avian fibroblasts. The inhibition of this ouabain-sensitive, active transport system temporally correlated with a decrease in the intracellular K+ concentration and the termination of cellular protein synthesis. By contrast, the rate of influx facilitated by the furosemide-sensitive (Na+K+Cl-) cotransport system was only slightly depressed. Efflux experiments indicated that no alterations in the relative rate of nonspecific permeability or "leakage" of K+ could be detected in chick cells infected by Sindbis virus. The amount of [3H]ouabain bound to Sindbis virus-infected cells paralleled the reduction in Na+K+ ATPase activity. These binding studies revealed no difference in the number of Na+ pump sites. The Km of ouabain binding, however, increased approximately 3.5-fold in the virus-infected cells. No change in the apparent affinity of the Na+ pump for K+ could be detected, yet the Vmax for ouabain-sensitive K+ transport was decreased. These experiments suggest that a reduction in Na+K+ ATPase turnover results in the altered intracellular monovalent cation levels found in Sindbis virus-infected chick cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0042-6822(84)90096-5 | DOI Listing |
Elife
February 2024
Allen Institute for Brain Science, Seattle, United States.
Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons.
View Article and Find Full Text PDFAnticancer Res
July 2023
Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba, Japan;
Background/aim: Sindbis virus (SINV) is a naturally occurring oncolytic virus that kills cancer cells and is less harmful to normal cells. In this study, a recombinant SINV, which expressed green and blue fluorescent proteins, was used to precisely analyze SINV infection and replication.
Materials And Methods: Antiviral responses, including IFN-β mRNA, protein kinase R (PKR), NF-B, and caspase 3/7, were analyzed in SINV-infected cancerous HeLa cells and normal human fibroblast TIG-1-20 cells.
Brain Commun
March 2023
Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel.
Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target.
View Article and Find Full Text PDFMapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons.
View Article and Find Full Text PDFPLoS Pathog
October 2022
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
Many viruses encode ion channel proteins that oligomerize to form hydrophilic pores in membranes of virus-infected cells and the viral membrane in some enveloped viruses. Alphavirus 6K, human immunodeficiency virus type 1 Vpu (HIV-Vpu), influenza A virus M2 (IAV-M2), and hepatitis C virus P7 (HCV-P7) are transmembrane ion channel proteins that play essential roles in virus assembly, budding, and entry. While the oligomeric structures and mechanisms of ion channel activity are well-established for M2 and P7, these remain unknown for 6K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!