Loose coupling of thermogenic mitochondria of brown adipose tissue is related to a high proton (or hydroxyl) conductance of the inner membrane and to the presence of a unique 32 kDa uncoupling protein. Reconstitution experiments of the purified protein in liposomes are reported which suggest that this component could form proton channels in the membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(83)80300-7DOI Listing

Publication Analysis

Top Keywords

uncoupling protein
8
brown adipose
8
adipose tissue
8
proton translocating
4
translocating activity
4
activity mitochondrial
4
mitochondrial uncoupling
4
protein brown
4
tissue reconstitution
4
reconstitution studies
4

Similar Publications

Cholesterol Attenuates the Pore-Forming Capacity of CARC-Containing Amphipathic Peptides.

Int J Mol Sci

January 2025

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.

Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.

View Article and Find Full Text PDF

Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.

View Article and Find Full Text PDF

The prevalence of obesity-associated kidney injury has increased, yet the precise extent of the injury and its underlying mechanisms remain unclear. This study used a Sprague-Dawley (SD) rat model to simulate human exposure scenarios, with the objective of investigating the involvement of mitochondria in obesity-induced renal toxicity. Biochemical analysis revealed significant increases in serum creatinine, cystatin C, urinary protein, urinary microalbumin, and urinary α1-microglobulin levels in rats fed a high-fat diet, indicating a notable decline in glomerular filtration function.

View Article and Find Full Text PDF

Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-Cre line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function.

View Article and Find Full Text PDF

Enhanced thermogenesis in PAS Kinase-deficient male mice.

Biochem Pharmacol

January 2025

Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain.

PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!