The expression of Na+ channels during differentiation of cultured embryonic chick skeletal muscle cells was investigated using saxitoxin (STX) and batrachotoxin (BTX), which previously have been shown to interact with distinct, separate receptor sites of the voltage-sensitive Na+ channel of excitable cells. In the present study, parallel measurements of binding of [3H]-STX (STX) and of BTX-activated 22Na+ uptake (Na influx) were made in order to establish the temporal relationship of the appearance of these two Na+ channel activities during myogenesis. Na influx was clearly measurable in 2-d cells; from day 3 to day 7 the maximum Na influx approximately doubled when measured with saturating BTX concentrations potentiated by Leiurus scorpion toxin, while the apparent affinity of BTX, measured without scorpion toxin, also increased. Saturable STX binding did not appear consistently until day 3; from then until day 7 the STX binding capacity increased about threefold, whereas the equilibrium dissociation constant (KD) decreased about fourfold. Although Na influx in cells of all ages was totally inhibited by STX or tetrodotoxin (TTX) at 10 microM, lower concentrations (2-50 nM) blocked the influx in 7-d cells much more effectively than that in 3-d cells, where half the flux was resistant to STX at 20-50 nM. Similar but smaller differences characterized the block by TTX. In addition, when protein synthesis is inhibited by cycloheximide, both Na influx and STX binding activities disappear more rapidly in 3-d than in 7-d cells, which shows that these functions are less stable metabolically in the younger cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228697 | PMC |
http://dx.doi.org/10.1085/jgp.82.3.365 | DOI Listing |
Cell Mol Biol Lett
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
Shiga toxin (Stx)-induced hemolytic uremic syndrome (HUS) poses a life-threatening complication for which a definitive treatment remains elusive. To exert its cytotoxic effect on renal cells, Stx must be delivered from the infected intestines to the kidney. However, the mechanism underlying Stx delivery remains unclear.
View Article and Find Full Text PDFHarmful Algae
November 2024
Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea. Electronic address:
Adv Healthc Mater
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA.
Aptamers are single-stranded oligonucleotides that fold into defined architectures for specific target binding. In this study, aptamers are selected that specifically bind to small-molecule neurotoxins and encapsulate them into cell membrane-coated nanoparticles (referred to as 'cellular nanoparticles' or 'CNPs') for effective neutralization of neurotoxins. Specifically, six different aptamers are selected that bind to saxitoxin (STX) or tetrodotoxin (TTX) and encapsulate them into metal-organic framework cores, which are then coated with neuronal cell membrane.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan. Electronic address:
Infection by enterotoxigenic Escherichia coli (ETEC) causes severe watery diarrhea and dehydration in humans. Heat-labile enterotoxin (LT) is a major virulence factor produced by ETEC. LT is one of AB-type toxins, such as Shiga toxin (Stx) and cholera toxin (Ctx), and the B-subunit pentamer is responsible for high affinity binding to the LT-receptor, ganglioside GM1, through multivalent interaction.
View Article and Find Full Text PDFPNAS Nexus
September 2024
Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, USA.
Engineered smart microbes that deliver therapeutic payloads are emerging as treatment modalities, particularly for diseases with links to the gastrointestinal tract. Enterohemorrhagic (EHEC) is a causative agent of potentially lethal hemolytic uremic syndrome. Given concerns that antibiotic treatment increases EHEC production of Shiga toxin (Stx), which is responsible for systemic disease, novel remedies are needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!