The electron paramagnetic resonance (EPR) and Mössbauer properties of native horseradish peroxidase have been compared with those of a synthetic derivative of the enzyme in which a mesohemin residue replaces the natural iron protoporphyrin IX heme prosthetic group. The oxyferryl pi cation radical intermediate, compound I, has been formed from both the native and synthetic enzyme, and the magnetic properties of both intermediates have been examined. The optical absorption characteristics of compound I prepared from mesoheme-substituted horseradish peroxidase are different from those of the compound I prepared from native enzyme [DiNello, R. K., & Dolphin, D. (1981) J. Biol. Chem. 256, 6903-6912]. By analogy to model-compound studies, it has been suggested that these optical absorption differences are due to the formation of an A2u and an A1u pi cation radical species, respectively. However, the EPR and Mössbauer properties of the native and synthetic enzyme and of their oxidized intermediates are quite similar, if not identical, and the data favor an A2u radical for both compounds I.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00289a024DOI Listing

Publication Analysis

Top Keywords

cation radical
12
horseradish peroxidase
12
peroxidase compound
8
epr mössbauer
8
mössbauer properties
8
properties native
8
native synthetic
8
synthetic enzyme
8
optical absorption
8
compound prepared
8

Similar Publications

Transient methods for understanding the properties of strongly oxidizing radicals.

Chem Commun (Camb)

January 2025

Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.

This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.

View Article and Find Full Text PDF

measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.

View Article and Find Full Text PDF

Background: The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives.

Results: The EtOH extracts of germinated O.

View Article and Find Full Text PDF

Functionalized Terthiophene as an Ambipolar Redox System: Structure, Spectroscopy, and Switchable Proton-Coupled Electron Transfer.

J Am Chem Soc

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.

View Article and Find Full Text PDF

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!