Periodate treatments of apo human serum transferrin (HST), and apo chicken ovotransferrin (COT) were previously reported to cause a rapid loss of Fe+3 binding capacity, with a loss of 3 to 5 tyrosine residues [P. AZARI AND J. L. PHILLIPS (1970) Arch. Biochem. Biophys. 138, 32-38; K. F. GEOGHEGAN, J. L. DALLAS, AND R. E. FEENEY (1980) J. Biol. Chem. 255, 11429-11434]. The effects of periodate and hydrogen peroxide on human lactotransferrin (HLT), HST, and COT have been compared. All three apotransferrins were rapidly inactivated and lost approximately 4 to 5 tyrosine residues by 5 mM periodate treatment; their iron complexes had little or no inactivation and losses of approximately 1 to 2 tyrosine residues. All three iron transferrins were highly resistant to inactivation by 5 mM periodate in bicarbonate, with or without the addition of phosphate, while in phosphate (with ambient carbonate) Fe2HLT was highly resistant, Fe2COT slightly less resistant, and Fe2HST much less resistant. Similar oxidations of methionines to the sulfoxides were found in both the apo and iron forms. After 150 min of 5 mM periodate treatment HST lost approximately 3 (apo 3.1, iron 2.8) of 9, HLT approximately 3 (apo 2.6, iron 2.9) of 6, and COT approximately 7 (apo 7.2, iron 7.2) of 11 methionines per mole of protein. In the presence of 8 M urea HST had essentially all of its methionine residues oxidized by periodate, but only lost part of its activity on renaturation. Treatment of all apo transferrins with 300 mM hydrogen peroxide resulted in little or no losses (less than 10%) in activity. HST lost approximately one-third of its methionines and no tyrosines during the 300 mM hydrogen peroxide treatment. Therefore the essentiality of tyrosines for all three transferrins was confirmed and the nonessentiality of methionines was demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(83)90085-1DOI Listing

Publication Analysis

Top Keywords

apo iron
16
tyrosine residues
12
hydrogen peroxide
12
human serum
8
serum transferrin
8
human lactotransferrin
8
chicken ovotransferrin
8
periodate treatment
8
highly resistant
8
hst lost
8

Similar Publications

Iron-sulfur clusters play a crucial role in electron transfer for many essential enzymes, including [FeFe]-hydrogenases. This study focuses on the [4Fe4S] cluster ([4Fe]H) of the minimal [FeFe]-hydrogenase from Chlamydomonas reinhardtii (CrHydA1) and employs advanced spectroscopy, site-directed mutagenesis, molecular dynamics simulations, and QM/MM calculations. We provide insights into the complex electronic structure of [4Fe]H and its role in the catalytic reaction of CrHydA1, serving as paradigm for understanding [FeFe]-hydrogenases.

View Article and Find Full Text PDF

Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:

Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells.

View Article and Find Full Text PDF

Here, we report the X-ray structure of the adduct formed upon reaction of cisplatin, one of the most prescribed anticancer agents for the clinic treatment of solid tumors, with the apo-form of human serum transferrin (hTF). Two Pt binding sites were identified in both molecules of the adduct present in the crystal asymmetric unit: Pt binds close to the side chains of Met256 and Met499 at the N- and C-lobe, respectively. In the crystal structure, the cisplatin moiety bound to Met256 also interacts with Ser616 from a symmetry related molecule.

View Article and Find Full Text PDF

The Staphylococcus aureus non-coding RNA IsrR regulates TCA cycle activity and virulence.

Nucleic Acids Res

December 2024

Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Dr, New Brunswick, NJ 08901, USA.

Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. Staphylococcus aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake.

View Article and Find Full Text PDF
Article Synopsis
  • The nitrogenase enzyme has two critical metalloclusters: the M-cluster for substrate reduction and the P-cluster for electron transfer, with ongoing debates about the structure of the P-cluster in the VFe protein.
  • Using the apo-form of VFe, researchers found that its P-cluster is heterogeneous and retains components but not a fully formed structure, as shown through SDS-PAGE and NativePAGE analyses.
  • EPR measurements indicated varying intensity signals at g=12 for different samples, suggesting that the P-cluster structure varies depending on the nitrogenase form and may indicate fragmentation in the apo-VFe's iron-sulfur clusters.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!