The alkaline nucleases induced by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) have been purified from high salt extracts of virus-infected cells. The purification used three types of column chromatography and resulted in apparently homogeneous DNase preparations with good recovery. The enzyme from HSV-2-infected cells has been characterized. It had both exonuclease and endonuclease activity, each with an unusually high pH optimum. The enzyme had an absolute requirement for magnesium which could not be replaced by other divalent cations. Analysis of the sedimentation characteristics and electrophoretic properties of the purified enzyme indicated that it was composed of a single subunit of mol. wt. 85 000. The purified HSV-2 enzyme was used as an immunogen to prime BALB/c mice which were used to prepare monoclonal antibodies. Three monoclonal antibodies were shown by several criteria to react with the enzyme. Thus, we were able to confirm that the 85K polypeptide did indeed have nuclease activity. This polypeptide was designated ICSP 22 in earlier studies and is a major polypeptide of virus-infected cells.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-64-10-2249DOI Listing

Publication Analysis

Top Keywords

monoclonal antibodies
12
herpes simplex
8
simplex virus
8
virus-infected cells
8
enzyme
6
virus non-structural
4
non-structural proteins
4
proteins purification
4
purification virus-induced
4
virus-induced deoxyribonuclease
4

Similar Publications

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.

View Article and Find Full Text PDF

Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.

View Article and Find Full Text PDF

Purpose: Durvalumab in combination with gemcitabine/cisplatin has shown a favorable benefit-risk profile in the TOPAZ-1 study for advanced biliary tract cancers (BTC). This analysis evaluated the population pharmacokinetics (PopPK) of durvalumab, and exposure-response for efficacy and safety (ERES) of TOPAZ-1.

Methods: The PopPK model for durvalumab was updated using data from 5 previously analysed studies and TOPAZ-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!