Of 73 rotavirus-positive fecal specimens tested, 39 yielded a human rotavirus that could be cultivated serially in MA104 or primary African green monkey kidney cells or both; 18 were serotyped. Four distinct serotypes were identified by plaque reduction or tube neutralization assay or both, and three of these serotypes were the same as those established previously by plaque reduction, using human rotaviruses cultivated by genetic reassortment with a cultivable bovine rotavirus. Ten human rotavirus strains received from Japan were found to be similar, if not identical, to our candidate prototype strains representing these four human rotavirus serotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC270797PMC
http://dx.doi.org/10.1128/jcm.18.2.310-317.1983DOI Listing

Publication Analysis

Top Keywords

human rotavirus
12
human rotaviruses
8
plaque reduction
8
human
5
direct isolation
4
isolation cell
4
cell culture
4
culture human
4
rotaviruses characterization
4
serotypes
4

Similar Publications

Viral infections in celiac disease: what should be considered for better management.

Clin Exp Med

December 2024

Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Following a gluten-free diet (GFD) is known as the main effective therapy available for celiac disease (CD) patients, which in some cases is not enough to heal all patients presentations completely. Accordingly, emerging researchers have focused on finding novel therapeutic/preventive strategies for this disorder. Moreover, previous studies have shown that celiac patients, especially untreated subjects, are at increased risk of developing viral and bacterial infections, which can become a challenge for the clinician.

View Article and Find Full Text PDF

Post rotavirus vaccine introduction in Mozambique (September 2015), we documented a decline in rotavirus-associated diarrhoea and genotypes changes in our diarrhoeal surveillance spanning 2008-2021. This study aimed to perform whole-genome sequencing of rotavirus strains from 2009 to 2012 (pre-vaccine) and 2017-2018 (post-vaccine). Rotavirus strains previously detected by conventional PCR as G2P[4], G2P[6], G3P[4], G8P[4], G8P[6], and G9P[6] from children with moderate-to-severe and less-severe diarrhoea and without diarrhoea (healthy community controls) were sequenced using Illumina MiSeq platform and analysed using bioinformatics tools.

View Article and Find Full Text PDF

Epidemiological, molecular, and evolutionary characteristics of G1P[8] rotavirus in China on the eve of RotaTeq application.

Front Cell Infect Microbiol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Introduction: This study, conducted in China prior to RotaTeq's launch, examined the epidemiological, molecular, and evolutionary features of the G1P[8] genotype RVA in children admitted with diarrhea, to aid in evaluating its efficacy and impact on G1P[8] RVA in China.

Methods: Data from the Chinese viral diarrhea surveillance network were collected from January 2016 to December 2018. RVA strains identified as the G1P[8] genotype were subjected to whole-genome sequencing.

View Article and Find Full Text PDF

Introduction: Diarrheal diseases are the top cause of preventable death, particularly among children under the age of five in developing countries like Ethiopia. Despite the national level of latrine coverage being 61%, diarrhea is responsible for the deaths of half a million children under 5 years annually. Therefore, this study aimed to assess diarrhea and its associated factors among children in open defecation free (ODF) and open defecation (OD) households of Degem district, Oromia, Ethiopia.

View Article and Find Full Text PDF

Group A rotavirus (RVA) is a major cause of severe gastroenteritis in infants and young children globally, despite the availability of live-attenuated vaccines. Challenges such as limited efficacy in low-income regions, safety concerns for immunocompromised individuals, and cold-chain dependency necessitate alternative vaccine strategies. Subunit vaccines, which use specific viral proteins to elicit immunity, provide a safer and more adaptable approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!