Effects of prostaglandins (PGs) on accumulation of cyclic AMP (cAMP) in the presence of a phosphodiesterase inhibitor were investigated in cells isolated from avian limb buds at various stages of development. Cells were responsive to PGE2 at the earliest stage investigated (stage 20-21) which was well in advance of specific cytodifferentiation of limb tissues. At three later stages (24-25; 26-28; 30-32), the responsiveness of cells isolated from the developing skeletal anlagen of the limb progressively increased coincident with the differentiation and maturation of the cartilage phenotype. Cells isolated from stage 26-28 cartilage rods were responsive also to prostacyclin (PGI2); however, the response produced was only about 50% of the response to an equivalent concentration of PGE2. Cells were not responsive to either PGF2 alpha or 6-keto PGF1 alpha, at concentrations of 30-33 micrograms/ml demonstrating a degree of specificity for PGE2 and PGI2. In the absence of the phosphodiesterase inhibitor, PGE2 increased cAMP accumulation two-fold over the controls and produced a concentration-dependent response between 0.3-30 micrograms/ml. The results demonstrate that PGs are capable of modulating cAMP levels of undifferentiated limb mesenchymal cells as well as embryonic cartilage cells and suggest a role for these compounds in limb chondrogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0090-6980(83)90019-9DOI Listing

Publication Analysis

Top Keywords

cells isolated
12
effects prostaglandins
8
cyclic amp
8
cells
8
phosphodiesterase inhibitor
8
cells responsive
8
limb
5
prostaglandins cyclic
4
amp levels
4
isolated
4

Similar Publications

Genome mining has revealed that spp. possess numerous down-regulated or cryptic biosynthetic gene clusters (BGCs). This finding hinted that our investigation of fungal secondary metabolomes is limited.

View Article and Find Full Text PDF

Background: Polydatin (PD), also known as tiger cane glycoside, is a natural compound extracted from the Japanese knotweed plant, which is often referred to as white resveratrol. It exhibits anti-inflammatory, antioxidant, and anti-apoptotic effects in the treatment of various diseases. However, the potential molecular mechanisms of PD in osteoarthritis have not been clearly elucidated.

View Article and Find Full Text PDF

Novel one-step lignin microsphere preparation for oral tissue regeneration applications.

Front Bioeng Biotechnol

January 2025

Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.

Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.

View Article and Find Full Text PDF

Restoring natural killer cell activity in lung injury with 1,25-hydroxy vitamin D: a promising therapeutic approach.

Front Immunol

January 2025

Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.

Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.

View Article and Find Full Text PDF

In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!