To probe the genetic basis of disease specificity of nondefective murine type C viruses, we are constructing recombinants in vitro between molecular clones of Friend murine leukemia virus (Fr-MuLV) and Moloney murine leukemia virus (Mo-MuLV). Fr-MuLV induces erythroleukemias when injected into newborn NFS mice, whereas Mo-MuLV almost invariably induces T-cell lymphomas. We find that a recombinant whose genome is derived primarily from Fr-MuLV but which has 621 nucleotides of Mo-MuLV information at its 3' end induces almost exclusively thymic lymphomas. The sequences derived from Mo-MuLV include 99 nucleotides encoding the carboxyl terminus of Prp15E, the origin of DNA +-strand synthesis, all of the U3 region, and 36 nucleotides of the R portion of the long terminal repeat. When the segment of Mo-MuLV was removed and replaced with the comparable segment from Fr-MuLV, the virus was again erythroblastosis-inducing. These results, in conjunction with studies from other laboratories [Laimins, L. A., Khoury, G., Gorman, C., Howard, B. & Gruss, P. (1982) Proc. Natl. Acad. Sci. USA 79, 6453-6457], suggest that transcriptional signals in U3 may determine tissue tropism and hence influence disease specificity ("targeting") of murine leukemia viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384047 | PMC |
http://dx.doi.org/10.1073/pnas.80.14.4408 | DOI Listing |
J Exp Med
June 2025
Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
Leukemia-driving mutations are thought to arise in hematopoietic stem cells (HSC), yet the natural history of their spread is poorly understood. We genetically induced mutations within endogenous murine HSC and traced them in unmanipulated animals. In contrast to mutations associated with clonal hematopoiesis (such as Tet2 deletion), the leukemogenic KrasG12D mutation dramatically accelerated HSC contribution to all hematopoietic lineages.
View Article and Find Full Text PDFLeukemia
March 2025
Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland.
Therapy with pegylated interferon alpha (pegIFNα) can induce a deep molecular response in a subset of patients with myeloproliferative neoplasms (MPN). Here we investigated the role of Socs2, a negative regulator of cytokine signaling, in modulating the response to pegIFNα in a JAK2-V617F mouse model of MPN. Deleting Socs2 in JAK2-V617F mice resulted in increased sensitivity to cytokines, without causing significant alterations in the MPN phenotype.
View Article and Find Full Text PDFNat Commun
March 2025
MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA.
Differences between normal tissues and invading tumors that allow tumor targeting while saving normal tissue are much sought after. Here we show that scarcity of VDAC2, and the consequent lack of Bak recruitment to mitochondria, renders hepatocyte mitochondria resistant to permeabilization by truncated Bid (tBid), a Bcl-2 Homology 3 (BH3)-only, Bcl-2 family protein. Increased VDAC2 and Bak is found in most human liver cancers and mitochondria from tumors and hepatic cancer cell lines exhibit VDAC2- and Bak-dependent tBid sensitivity.
View Article and Find Full Text PDFCancer Cell
March 2025
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Blood and Marrow Transplantation & Cellular Therapy, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO 80045, USA. Electronic address:
Chimeric antigen receptor (CAR) T cells induce responses in patients with relapsed/refractory leukemia; however, long-term efficacy is frequently limited by relapse. The inability to target antigen-low cells is an intrinsic vulnerability of second-generation CAR T cells and underlies most relapses following CD22BBz CAR T cell therapy. Here, we interrogate CD22BBz CAR signaling in response to low antigen and find inefficient phosphorylation of the linker for activation of T cells (LAT) limiting downstream signaling.
View Article and Find Full Text PDFVirologie (Montrouge)
February 2025
Unité des Virus émergents (UVE : Aix-Marseille Univ, Università di Corsica, Corte, IRD 190, Inserm 1207, IRBA), France.
The reverse transcriptase of Moloney Murine Leukemia Virus (MMLV) is an enzyme that synthesizes DNA from an RNA template. Among reverse transcriptases, this enzyme is currently the most commonly used in molecular biology and diagnostics. Since its discovery, this viral protein has been extensively studied, shedding light on its structural and functional characteristics, and offering opportunities to optimize the catalytic performances for biotechnological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!