The dependence of the crusiciform structure formation on superhelical density was studied by means of high resolution gel-electrophoresis. A short pAO3 DNA plasmid (1683 b. p.) which is a quarter of the ColE1 DNA plasmid and contains the main palindrome of ColE1 DNA was used. The excellent resolution of all topoisomers of pAO3 DNA in gel-electrophoresis made it possible to observe a sharp abruption in the pattern of pAO3 DNA topoisomers separation. The two-dimensional gel-electrophoresis data showed that observed abruption is caused by a sharp decrease of writhing in the molecules with superhelical density--sigma approximately equal to 0,05. An analysis of S1-nuclease digestion products of DNA with different superhelical density was accomplished and these data showed that a sharp structural transition in supercoiled DNA pAO3 is caused by formation of a cruciform structure in the main palindrome.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pao3 dna
12
dna
8
superhelical density
8
dna plasmid
8
cole1 dna
8
main palindrome
8
pao3
5
[formation cruciform
4
cruciform structures
4
structures pao3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!