The topography of visual and somatosensory projections to the superior colliculus in the Syrian hamster was studied using electrophysiological techniques. The visual projection to the superficial layers of the colliculus is similar in general topography to that described for other rodents. The magnification of the visual field on the colliculus surface was greatest for nasal visual field. The magnification factor paralleled retinal ganglion cell density for corresponding visual field sectors. In the deep layers of the colliculus, a somatosensory projection is found in register with the visual projection such that the anterior somatosensory field and nasalmost visual field are both represented in rostral colliculus; posterior somatosensory fields and temporal visual fields are found in caudal colliculus. Likewise, upper visual and somatosensory fields are found in medial colliculus, and lower visual and somatosensory fields are found in lateral colliculus. Large receptive fields make the somatosensory topography less precise than the visual topography, but this lack of precision could serve to keep the two maps generally in register during eye and body movements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-8993(78)90632-7 | DOI Listing |
Biosens Bioelectron
January 2025
Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:
In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Department of Biology, Neuroendocrinology and Human Biology Unit, Institute for Animal Cell- and Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, D-22085 Hamburg, Germany. Electronic address:
This study investigated the neural correlates of perceiving visual contagion cues characteristic of respiratory infections through functional magnetic resonance imaging (fMRI). Sixty-two participants (32f/ 30 m; ∼25 years on average) watched short videos depicting either contagious or non-contagious everyday situations, while their brain activation was continuously measured. We further measured the release of secretory immunoglobulin A (sIgA) in saliva to examine the first-line defensive response of the mucosal immune system.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.
View Article and Find Full Text PDFiScience
January 2025
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Sports Science, Zhejiang University, Hangzhou, Zhejiang, China.
Human postural control system has the capacity to adapt to balance-challenging perturbations. However, the characteristics and mechanisms of postural adaptation to continuous perturbation under the sensory conflicting environments remain unclear. We aimed to investigate the functional role of oscillatory coupling drive to lower-limb muscles with changes in balance control during postural adaptation under multisensory congruent and incongruent environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!