Enzymatic dispersion has been used to yield single cells from segments of bullfrog atrium. Previous data (Hume and Giles, 1981) have shown that these individual cells are quiescent and have normal resting potentials and action potentials. The minimum DC space constant is approximately 920 microns. The major goals of the present study were: (a) to develop and refine techniques for making quantitative measurements of the transmembrane ionic currents, and (b) to identify the individual components of ionic current which generate different phases of the action potential. Initial voltage-clamp experiments made using a conventional two-microelectrode technique revealed a small tetrodotoxin (TTX)-insensitive inward current. The small size of this current (2.5-3.0 X 10(-10)A) and the technical difficulty of the two-microelectrode experiments prompted the development of a one-microelectrode voltage-clamp technique which requires impalements using a low-resistance (0.5-2 M omega) micropipette. Voltage-clamp experiments using this new technique in isolated single atrial cells reveal five distinct ionic currents: (a) a conventional transient Na+ current, (b) a TTX-resistant transient inward current, carried mainly by Ca++, (c) a component of persistent inward current, (d) a slowly developing outward K+ current, and (e) an inwardly rectifying time-independent background current. The single suction micropipette technique appears well-suited for use in the quantitative study of ionic currents in these cardiac cells, and in other small cells having similar electrophysiological properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2215568 | PMC |
http://dx.doi.org/10.1085/jgp.81.2.153 | DOI Listing |
Int J Pharm
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 51006 China. Electronic address:
Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Jiujiang Research Institute, Xiamen University, Xiamen, China.
Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a LiSi/Si-LiSi double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of LiSi alloys, the anode forms a top layer (LiSi layer) with mixed ionic/electronic conduction and a bottom layer (Si-LiSi layer) containing a three-dimensional continuous conductive network.
View Article and Find Full Text PDFGels
January 2025
Faculty of Medicine, Dalian University of Technology, Dalian 116033, China.
Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
In this preliminary study, the long-term effects of calcium chloride crosslinking concentration on viability of 16HBE14o- human bronchial epithelial cells embedded in alginate-extracellular matrix (ECM) or alginate-methylcellulose-ECM hydrogels have been investigated. There is currently a limited understanding regarding the effects of crosslinking solution concentration on lung epithelial cells embedded in hydrogel. Furthermore, the effects of calcium chloride concentration in crosslinking solutions on other cell types have not been reported regarding whether the addition of viscosity and stiffness tuning agents such as methylcellulose will alter the responses of cells to changes in calcium chloride concentration in crosslinking solutions.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Electroosmosis reduces the available energy from ion transport arising due to concentration gradients across ion-exchange membranes. This work builds on previous efforts to describe the electroosmosis, the permselectivity and the apparent transport number of a membrane, and we show new measurements of concentration cells with the Selemion CMVN cation-exchange membrane and single-salt solutions of HCl, LiCl, NaCl, MgCl, CaCl and NHCl. Ionic transport numbers and electroosmotic water transport relative to the membrane are efficiently obtained from a relatively new permselectivity analysis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!