1. A method for preparing the 'Rieske' iron-sulfur protein and the bc1 subcomplex of complex III was developed. The new method is advantageous over the published ones in that: (a) the final yield and amount exceeds by far those obtained when employing the hitherto published methods; (b) the iron-sulfur protein as well as the bc1 subcomplex are obtained by one and the same preparation procedure from a common source; and (c) the preparation method is easier than the published ones. 2. The iron-sulfur protein obtained represents the first reconstitutively active preparation present in a monodisperse state. 3. The reconstitution of the ubiquinol:cytochrome c reductase from the two components is a reversible dissociation process. Full activity of ubiquinol:cytochrome c reductase is reached after saturation of the binding site of the bc1 subcomplex for iron-sulfur protein. 4. Full reduction of the constituent cytochrome c1 of the bc1 subcomplex can already be obtained with substoichiometric amounts of iron-sulfur protein, however. 5. The question might be raised whether the observed dissociation equilibrium represents merely a phenomenon occurring specifically with the proteins isolated in Triton X-100 and investigated in a Triton-containing buffer, or whether dissociation of the iron-sulfur protein also takes place in the mitochondrial membrane in the course of the electron-transfer reaction sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1983.tb07376.xDOI Listing

Publication Analysis

Top Keywords

iron-sulfur protein
28
bc1 subcomplex
20
'rieske' iron-sulfur
8
ubiquinolcytochrome reductase
8
iron-sulfur
7
protein
7
bc1
5
subcomplex
5
reconstitution ubiquinol
4
ubiquinol cytochrome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!