Botulinum (BOT) toxin is known to block quantal acetylcholine (ACh) release at the neuromuscular junction but little is known about its effect on non-quantal ACh release. We have examined the effect of BOT on non-quantal ACh release directly using a variant of the electrophysiological technique described by Katz and Miledi. This method is based on the observation that non-quantally released ACh results in a small, continual depolarization of the postsynaptic membrane, after inhibition of cholinesterase. This depolarization can be revealed by suddenly blocking ACh receptors with a pulse of curare, resulting in an abrupt hyperpolarization, the amplitude of which is presumed to be proportional to the rate of non-quantal ACh release. BOT treatment resulted in a marked decrease in quantal ACh release as shown by miniature endplate potential (m.e.p.p.) frequencies (control 0.65 +/- 0.33 m.e.p.p.s/s; BOT 0.03 +/- 0.03 m.e.p.p.s/s). However, non-quantal ACh release measured by the curare induced hyperpolarization, was not significantly different in control and BOT treated diaphragms (control 1.01 +/- 0.09 mV: BOT 1.03 +/- 0.11 mV). Our results show that BOT does not block non-quantal ACh release at a time when it has a profound effect on spontaneous quantal ACh release. This suggests that quantal and non-quantal ACh release take place through different release mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(83)91300-8DOI Listing

Publication Analysis

Top Keywords

ach release
36
non-quantal ach
24
ach
12
release
11
quantal non-quantal
8
neuromuscular junction
8
quantal ach
8
non-quantal
7
bot
7
quantal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!