In normal human monocyte macrophages 125I-labeled beta-migrating very low density lipoproteins (125I-beta-VLDL), isolated from the plasma of cholesterol-fed rabbits, and 125I-human low density lipoprotein (LDL) were degraded at similar rates at protein concentrations up to 50 micrograms/ml. The high affinity degradation of 125I-labeled human LDL saturated at approximately 50 micrograms/ml; however, 125I-labeled rabbit beta-VLDL high affinity degradation saturated at 100-120 micrograms/ml. The activity of the beta-VLDL receptor was 3-fold higher than LDL receptor activity on freshly isolated normal monocyte macrophages, but with time-in-culture both receptor activities decreased and were similar after several days. The degradations of both beta-VLDL and LDL were Ca2+ sensitive, were markedly down regulated by sterols, and were up regulated by preincubation of the cells in a lipoprotein-free medium. The beta-VLDL receptor is genetically distinct from the LDL receptor as indicated by its presence on monocyte macrophages from a familial hypercholesterolemic homozygote. Human thoracic duct lymph chylomicrons as well as lipoproteins of Sf 20-5000 from fat-fed normal subjects inhibited the degradation of 125I-labeled rabbit beta-VLDL as effectively as nonradioactive rabbit beta-VLDL. We conclude: 1) the beta-VLDL receptor is genetically distinct from the LDL receptor, and 2) intestinally derived human lipoproteins are recognized by the beta-VLDL receptor on macrophages.

Download full-text PDF

Source

Publication Analysis

Top Keywords

monocyte macrophages
16
beta-vldl receptor
16
low density
12
rabbit beta-vldl
12
ldl receptor
12
density lipoprotein
8
human monocyte
8
high affinity
8
affinity degradation
8
degradation 125i-labeled
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!