Enzymatic activities that catalyze the interconversion of purines and purine derivatives were detected in cell extracts of Spirochaeta aurantia, Spirochaeta stenostrepta, Treponema succinifaciens, and Treponema denticola. Phosphoribosyltransferase activities present in cell extracts of each of the four spirochete species functioned in the conversion of adenine, hypoxanthine, and guanine to AMP, IMP, and GMP, respectively. Nucleotidase activities in the extracts mediated the formation of nucleosides from nucleotides. The conversion of adenosine, inosine, and guanosine to the respective purine bases was catalyzed by nucleoside phosphorylase and, in some instances, by nucleoside hydrolase activities. Guanine deaminase activity was found in both S. aurantia and S. stenostrepta, whereas adenosine deaminase activity was detected only in S. aurantia. Adenine deaminase activity in T. succinifaciens extracts was sensitive to O2 and was relatively resistant to heating. Our results indicate that the four species of spirochetes studied possess a broad spectrum of purine interconversion enzymes. It is suggested that these enzymes may function in metabolic processes important for the survival of spirochetes in nutrient-poor natural environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC221615PMC
http://dx.doi.org/10.1128/jb.152.3.1105-1110.1982DOI Listing

Publication Analysis

Top Keywords

deaminase activity
12
enzymatic activities
8
interconversion purines
8
cell extracts
8
activities interconversion
4
purines spirochetes
4
spirochetes enzymatic
4
activities
4
activities catalyze
4
catalyze interconversion
4

Similar Publications

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Alfalfa ( L.) is an outstanding species used for the remediation of heavy metal-contaminated soil, and our previous research has shown that PGPR can promote plant growth under high-concentration lead stress. This discovery has forced scientists to search for PGPR strains compatible with alfalfa to develop an innovative bioremediation strategy for the remediation of lead-contaminated soil.

View Article and Find Full Text PDF

ADAR Therapeutics as a New Tool for Personalized Medicine.

Genes (Basel)

January 2025

Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.

In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity.

View Article and Find Full Text PDF

About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes.

View Article and Find Full Text PDF

Mitochondrial base editing: from principle, optimization to application.

Cell Biosci

January 2025

Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.

In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!