The effects of temperature, pH and sodium dodecyl sulfate on the conformation of the enterotoxin from Clostridium perfringens type A were followed by circular dichroism in both the peptide and aromatic regions. At near-physiological conditions (35 degrees C, pH 6.7) the enterotoxin exhibited a conformation consisting of approximately 60% pleated sheet, 40% non-periodic, and essentially no helix. The peptide region was relatively stable at temperatures up to 55 degrees C and at pH values ranging from 4-10. The aromatic region demonstrated profound, time-dependent changes at 55 degrees C. At temperatures greater than 55 degrees C, extremes of pH, and in the presence of SDS, the spectra in both regions showed major structural reorganization; in most cases a gain in helical content at the expense of sheet structure was observed. The conformational properties of the protein are very similar to those observed for the lectins, a group of carbohydrate-binding proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-4838(82)90408-3 | DOI Listing |
BMC Med
January 2025
Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, China.
Background: While previous reports characterised global and regional variations in RSV seasonality, less is known about local variations in RSV seasonal characteristics. This study aimed to understand the local-level variations in RSV seasonality and to explore the role of geographical, meteorological, and socio-demographic factors in explaining these variations.
Methods: We conducted a systematic literature review to identify published studies reporting data on local-level RSV season onset, offset, or duration for at least two local sites.
Sci Rep
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
This study explores the impact of natural deep eutectic solvents (NADES) on the structure and functionality of treebean (Parkia timoriana) seed protein, a novel approach to enhancing protein stability and functionality for sustainable bioprocessing. The research aims to evaluate the dynamic interactions between protein and choline chloride-sugar-based NADES, focusing on their effects on thermal properties, emulsification behaviour, and rheological characteristics. NADES were formulated using different sugars, and protein-NADES dispersions were analysed for their physicochemical and functional properties.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto Politécnico Nacional, Centro de Desarrollo Aeroespacial, 06610, Mexico City, Mexico.
This work presents the design and validation of a thermal subsystem for a 1U CubeSat-type nanosatellite. The design encompasses two stages: regulating the satellite's temperature range through implementing passive control based on multilayer coatings and an electronic board capable of measuring the internal surface temperature of each of the satellite's six faces. Validation is conducted through tests performed in a theoretical thermo vacuum chamber that provides a controlled environment, simulating the thermal conditions to which the satellite will be exposed once in orbit.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety Science and Engineering (School of Emergency Management), Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!