When turtle retinae were incubated with the fluorescent dye, lucifer yellow, in the absence of Ca2+, the dye was selectively accumulated by cell bodies located in the inner nuclear layer (INL). The morphological features of the labeled cells suggested that they were bipolar cells. Other fluorescent dyes, Procion yellow and Primulin, were also taken up by somata in the INL, in the absence of external Ca2+, although the identity of the labeled cells was uncertain. As with turtle retina, lucifer yellow was accumulated predominantly by cell bodies in the INL of goldfish, frog, and rat retinae. Lucifer yellow uptake appeared to be independent of synaptic activity since dark-adaptation or aspartate treatment of retinae did not alter the dye uptake. Further, retinae from dystrophic (RCS) rats showed uptake similar to that seen in normal rat retinae. After uptake, most of the dye was found intracellularly as patches or vacuoles in the somata of the labeled cells. Dye uptake was not inhibited by removal of Na+ from the incubation medium. Further, prior treatment with metabolic inhibitors, cyanide and iodoacetate, or cytochalasin B, did not block the dye uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.902060405DOI Listing

Publication Analysis

Top Keywords

lucifer yellow
16
labeled cells
12
dye uptake
12
accumulated cell
8
cell bodies
8
rat retinae
8
dye
6
uptake
6
yellow
5
cells
5

Similar Publications

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Iron transfer across a functional syncytialized trophoblast monolayer.

Placenta

November 2024

Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland. Electronic address:

Studying iron transfer across trophoblast monolayers is crucial given the significance of iron in maintaining a healthy pregnancy and supporting fetal growth and development. To get insights into the complex mechanism of transplacental iron transfer, we developed a standardized Transwell®-based monolayer model using BeWo (clone b30) cells. Our proposed method is divided into two parts: 1.

View Article and Find Full Text PDF

Dietary fibers (DF) are important components of human and animal diets. However, they can decrease protein digestibility and absorption and thus the nutritional value of a food. The aim of this study was to investigate how the form of delivery of pea DF impacted the integrity of the intestinal barrier and, thereby, the potential absorption of molecules.

View Article and Find Full Text PDF

Macrophages survey their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows internalization of specific ligands, whereas pinocytosis nonselectively internalizes extracellular fluids and solutes. CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone marrow-derived macrophages (BMDM).

View Article and Find Full Text PDF

The placenta plays a critical role in maternal-fetal nutrient transport and fetal protection against drugs. Creating physiological in vitro models to study these processes is crucial, but technically challenging. This study introduces an efficient cell model that mimics the human placental barrier using co-cultures of primary trophoblasts and primary human umbilical vein endothelial cells (HUVEC) on a Transwell-based system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!