We have sought to determine the role of histone H2A phosphorylation in chromatin by examining the distribution of the phosphorylated and unphosphorylated forms of this core histone within the nuclei of mouse and human cells. At any time, only about 15% of the H2A of whole chromatin is in the phosphorylated form, and its phosphate is rapidly turned over, even in quiescent cells that contain a functional nucleus. The phosphorylations and dephosphorylations are not specifically relate to progress through the cell cycle, nor to DNA synthesis or repair, and they are not selectively nucleolar. Euchromatin is substantially enriched with phosphorylated H2A but is not the exclusive repository of it. Possible roles of this modification of H2A are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00539a021DOI Listing

Publication Analysis

Top Keywords

histone h2a
8
h2a phosphorylation
8
cells functional
8
phosphorylation animal
4
animal cells
4
functional considerations
4
considerations sought
4
sought determine
4
determine role
4
role histone
4

Similar Publications

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Breast cancer (BC) subtypes exhibit distinct epigenetic landscapes, with triple-negative breast cancer (TNBC) lacking effective targeted therapies. This study investigates histone biomarkers and therapeutic vulnerabilities across BC subtypes. The immunohistochemical profiling of >20 histone biomarkers, including histone modifications, modifiers, and oncohistone mutations, was conducted on a discovery cohort and a validation cohort of BC tissues, healthy controls, and cell line models.

View Article and Find Full Text PDF

This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike.

View Article and Find Full Text PDF

Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer.

View Article and Find Full Text PDF

The number and variety of identified histone post-translational modifications (PTMs) are continually increasing. However, the specific consequences of each histone PTM remain largely unclear, primarily due to the lack of methods for selectively and rapidly introducing a desired histone PTM in living cells without genetic engineering. Here, we report the development of a cell-permeable histone acetylation catalyst, BAHA-LANA-PEG-CPP44, which selectively enters leukemia cells, binds to chromatin, and acetylates H2BK120 of endogenous histones in a short reaction time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!