1. Reduction of ferricyanide by the isolated perfused rat liver and by isolated rat hepatocytes was studied. 2. Ferricyanide was reduced to ferrocyanide by the perfused liver at a linear rate of 0.22mumol/min per g of liver. Ferricyanide was not taken up by the liver and the perfusate concentration of ferricyanide+ferrocyanide remained constant throughout the perfusion. Perfusate samples from livers perfused without ferricyanide did not reduce ferricyanide. 3. Isolated hepatocytes reduced ferricyanide in a biphasic manner. The initial rate of 2.3mumol/min per g of cells proceeded for approx. 3min and derived from low-affinity sites (apparent K(m)>1.3mm). The secondary rate of 0.29mumol/min per g of cells was maintained for the remainder of the incubation and derived from higher affinity sites (apparent K(m)0.13mm). Disruption of the cells resulted in an increase in the low-affinity rate and a decrease in the high-affinity rate. 4. Ferrocyanide was oxidized by isolated hepatocytes but not by perfused liver. The apparent K(m) for ferrocyanide oxidation by hepatocytes was 1.3mm. 5. Oxidized cytochrome c was reduced by isolated hepatocytes in the presence of 1mm-KCN but at a rate less than that of the reduction of ferricyanide. 6. Properties of the ferricyanide-reducing activities of intact hepatocytes and the perfused liver were examined. The low-affinity rate, present only in cell and broken cell preparations, was inhibited by 1mum-rotenone and 0.5mm-ferrocyanide, and stimulated by 0.1mm-KCN. The mitochondrial substrate, succinate, also stimulated this rate. The perfused liver showed only a high-affinity activity for ferricyanide reduction. This activity was also present in liver cells and was unaffected by rotenone, antimycin A, KCN, NaN(3), or p-hydroxymercuribenzoate but was inhibited by 2.6mm-CaCl(2), 2-heptyl-4-hydroxyquinoline-N-oxide and ferrocyanide. Overall, these results are consistent with the occurrence of a trans-plasma membrane redox system of liver that reduces extracellular ferricyanide to ferrocyanide. The reduction process shows properties which are similar to that of the NADH:ferricyanide oxidoreductase found in isolated liver plasma membranes but different from that of mitochondria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1163578 | PMC |
http://dx.doi.org/10.1042/bj2000565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!