We have obtained biochemical evidence that misonidazole when administered in large doses to rats produces a sparse dying-back peripheral neuropathy and degenerative changes in the trigeminal ganglia and cerebellum. In our experience these neurotoxic effects of misonidazole cannot be detected reliably by the use of simple behavioural and functional tests, e.g., inclined plane and narrowing bridge tests (Rose and Dewar, unpublished results). Therefore, these methods would be of limited use in the neurotoxicity screening of misonidazole analogues. On the other hand, the biochemical approach provides a convenient quantitative method which could be used as the basis for comparing the neurotoxicity of other candidate radiosensitizing drugs.

Download full-text PDF

Source
http://dx.doi.org/10.3109/15563658108990350DOI Listing

Publication Analysis

Top Keywords

biochemical assessment
4
assessment neurotoxicity
4
neurotoxicity radiosensitizing
4
radiosensitizing drug
4
misonidazole
4
drug misonidazole
4
misonidazole rat
4
rat biochemical
4
biochemical evidence
4
evidence misonidazole
4

Similar Publications

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Background: Obesity is a risk factor for heart failure (HF) development but is associated with a lower incidence of mortality in HF patients. This obesity paradox may be confounded by unrecognized comorbidities, including cachexia.

Methods: A retrospective assessment was conducted using data from a prospectively recruiting multicenter registry, which included consecutive acute heart failure patients.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!