The activation mechanism of Na,K-ATPase in nerve fibres after rhythmic excitation was studied. 3H-ouabain binding to a nerve was found to depend on the frequency of rhythmic excitation. The maximum of 3H-ouabain binding to a nerve crab was at 10 imp/sec. Rhythmic excitation was found not to change Na,K-ATPase affinity to ouabain, but appeared to increase the concentration of ouabain-sensitive sites in the nerve membrane. Transformation of inactive forms of the enzyme into active ones was supposed to be a possible cause of greater 3H-ouabain binding to the nerve during rhythmic exitation.
Download full-text PDF |
Source |
---|
eNeuro
January 2025
Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Wassenaarseweg 52 2333 AK, Leiden, Netherlands.
The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively.
View Article and Find Full Text PDFBiomolecules
December 2024
Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France.
We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer's disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days in vitro. We now investigate the effect of MT5-MMP on incipient pathogenic pathways that are activated in cortical primary cultures at 21-24 days in vitro (DIV), during which time neurons are organized into a functional mature network. Using wild-type (WT), MT5-MMP (MT5), 5xFAD (Tg), and 5xFADxMT5-MMP (TgMT5) mice, we generated primary neuronal cultures that were exposed to IL-1β and/or different proteolytic system inhibitors.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Institute of Physiology I, Münster University, Münster, Germany. Electronic address:
Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.
The hypothesis that the hippocampal theta rhythm consists of inhibitory postsynaptic potentials (IPSPs) was critical for understanding the theta rhythm. The dominant views in the early 1980s were that intracellularly recorded theta consisted of excitatory postsynaptic potentials (EPSPs) with little participation by IPSPs, and that IPSPs generated a closed monopolar field in the hippocampus. I (Leung) conceived of a new model for generation of the hippocampal theta rhythm, with theta-rhythmic IPSPs as an essential component, and thus sought to reinvestigate the relation between theta and IPSPs quantitatively with intracellular and extracellular recordings.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA.
Transcranial magnetic stimulation (TMS) applied to the motor cortex has revolutionized the study of motor physiology in humans. Despite this, TMS-evoked electrophysiological responses show significant variability, due in part to inconsistencies between TMS pulse timing and ongoing brain oscillations. Variable responses to TMS limit mechanistic insights and clinical efficacy, necessitating the development of methods to precisely coordinate the timing of TMS pulses to the phase of relevant oscillatory activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!