Subcutaneous adipose tissue blood flow (ATBF) was measured in six male subjects by the 133Xe-washout technique during 3-4 h of exercise at a work load corresponding to an oxygen uptake of about 1.71/min. The measurements were done during control conditions, during blockade of lipolysis by nicotinic acid, during acute i.v. beta-adrenergic blockade by propranolol, and during continuous i.v. infusion of glucose. The most pronounced lipid mobilization and utilization during work was seen in the control experiments where ATBF rose 3-fold on average from the initial rest period to the third hour of work. No increase in lipolysis and no increase in ATBF were found when lipolysis was blocked by nicotinic acid (0.3 g/h). Propranolol treatment (0.15 mg/kg) reduced lipolysis and nearly abolished the increase in ATBF during exercise. Intravenous administration of glucose (about 0.25 g/min) did not influence lipid metabolism (evaluated by the respiratory quotient) nor did it reduce the ATBF response to exercise. These results are inconsistent with the hypothesis that increase in ATBF during exercise is elicited via direct stimulation of vascular beta1-receptors, while they are not in disagreement with the hypothesis that adipose tissue vasodilation during exercise is secondary to metabolic events connected to lipolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00365518109092065 | DOI Listing |
Pulmonology
December 2025
Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia.
Orthopadie (Heidelb)
January 2025
Klinik für Orthopädie, Unfall- und Handchirurgie, HELIOS Klinikum Krefeld, Lutherplatz 40, 47805, Krefeld, Deutschland.
Background: Obesity is increasingly being recognized as a significant risk factor for the development and worsening of back pain. In order to make possible adjustments to therapies and lifestyle, the relationship must first be understood.
Method: This article attempts to explain the relationship between obesity and back pain based on the existing literature.
J Craniofac Surg
January 2025
Department of Plastic Surgery, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital).
Introduction: The strategy of adipose component transplantation has been proposed and widely used in both reconstructive and aesthetic surgery. However, there is no uniform standard for the preparation of component fat, and the volume calculation of liposuction and injection in clinical applications is mostly based on experience. This study aims to analyze the volume of component fat obtained during clinical series.
View Article and Find Full Text PDFElife
January 2025
Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, United States.
It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.
View Article and Find Full Text PDFBreast Cancer (Dove Med Press)
January 2025
Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine - ETHIANUM, Heidelberg, 69115, Germany.
Background: Adipokines, bioactive peptides secreted by adipose tissue, appear to contribute to breast cancer development and progression. While numerous studies suggest their role in promoting tumor growth, the exact mechanisms of their involvement are not yet completely understood.
Methods: In this project, varying concentrations of recombinant human adipokines (Leptin, Lipocalin-2, PAI-1, and Resistin) were used to study their effects on four selected breast cancer cell lines (EVSA-T, MCF-7, MDA-MB-231, and SK-Br-3).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!