Download full-text PDF |
Source |
---|
ACS Chem Biol
December 2024
Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States.
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain.
View Article and Find Full Text PDFbioRxiv
July 2024
Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States.
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Departamento. de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain.
Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the cytoplasm of the adenylate cyclase of , should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2024
Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany.
6-Thioguanine (6TG) is a clinically used antitumor agent that was rationally designed as a DNA-targeting antimetabolite, but it also occurs naturally. 6TG is a critical virulence factor produced by Erwinia amylovorans, a notorious plant pathogen that causes fire blight of pome fruit trees. The biosynthesis of the rare thioamide metabolite involves an adenylating enzyme (YcfA) and a sulfur-mobilizing enzyme (YcfC), but the mechanism of sulfur transfer and putative intermediates have remained elusive.
View Article and Find Full Text PDFMethods Mol Biol
November 2023
Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS, UMR 3528, Paris, France.
The bacterial two-hybrid (BACTH, for "Bacterial Adenylate Cyclase-based Two-Hybrid") system is a simple and fast genetic approach to detect and characterize protein-protein interactions in vivo. This system is based on the interaction-mediated reconstitution of a cAMP signaling cascade in Escherichia coli. As BACTH uses a diffusible cAMP messenger molecule, the physical association between the two interacting chimeric proteins can be spatially separated from the transcription activation readout, and therefore, it is possible to analyze protein-protein interactions that occur either in the cytosol or at the inner membrane level as well as those that involve DNA-binding proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!