p-Fluorosulfonylbenzoyl 5'-adenosine (FSO2BzAdo) was shown previously to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase II from porcine skeletal muscle (Zoller, M. J., and Taylor, S. S. (1979) J. Biol. Chem. 254, 8363-8368). The catalytic subunit of porcine heart cAMP-dependent protein kinase was also inhibited following incubation with FSO2[14C]BzAdo, and inhibition was shown to result from the stoichiometric, covalent modification of a single lysine residue. The amino acid sequence in an extended region around the carboxybenzenesulfonyl lysine (CBS-lysine) was elucidated by characterizing both tryptic and cyanogen bromide peptides containing the 14C-modified residue. The sequence in this region was Leu-Val-Lys-His-Lys-Glu-Thr-Gly-Asn-His-Phe-Ala-Met-Lys(CBS)-Ile-Leu-Asp-Lys-Glu-Lys-Val-Val-Lys-Leu-Lys-Gln-Ile. The covalently modified residue corresponded to lysine 71 in the overall polypeptide chain. Homologies to bovine heart catalytic subunit and to a site modified by FSO2BzAdo in phosphofructokinase are considered.
Download full-text PDF |
Source |
---|
J Biol Chem
January 2025
Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal, India, 741235. Electronic address:
Aberrant activation of the hedgehog (Hh) signaling pathway positively correlates with progression, invasion and metastasis of several cancers, including breast cancer. Although numerous inhibitors of the Hh signaling pathway are available, several oncogenic mutations of key components of the pathway, including Smoothened (Smo), have limited their capability to be developed as putative anti-cancer drugs. In this study, we have modulated the Hh signaling pathway in breast cancer using a specific FDA-approved phosphodiesterase 4 (PDE4) inhibitor rolipram.
View Article and Find Full Text PDFFEBS J
January 2025
Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Laboratoire de Physiopathologie et Régulation des Transports Ioniques, Université de Poitiers, France.
Despite the importance of ocular surface in human physiology and diseases, little is known about ion channel expression, properties and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse and especially rabbit animal models. Here, we developed primary human Meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Sepsis is a life-threatening severe organ dysfunction, and the pathogenesis remains uncertain. Increasing evidence suggests that circRNAs, mRNAs, and microRNAs can interact to jointly regulate the development of sepsis. Identifying the interaction between ceRNA regulatory networks and sepsis may contribute to our deeper understanding of the pathogenesis of sepsis, bring new insights into early recognition and treatment of sepsis.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China. Electronic address:
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent protein kinase A (PKA) suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!