Some kinetic features of D-Ala2-[Tyr-3.5-3H]enkephalin (5-D-Leu) binding to opiate receptors of rat brain were studied. It was shown that the Leu-enkephalin D analog interacts with the high and low affinity binding sites of opiate receptors, the equilibrium constants being equal to 0.71 and 8.4 nM, respectively. The rate constant for the label association with the high affinity binding sites in 2 . 10(8) M-1 min-1; those for the label dissociation from the opiate receptor binding sites with high and low affinities are 7.2 . 10(-3) and 0.16 min-1, respectively. Hence, the half-life time of these complexes is 95.7 and 4.3 min, respectively. Na+, K+ and Li+ markedly decrease the specific finding of the label, while Mg2+, Mn2+ and Ca2+ at the concentrations studied markedly increase its specific binding. It is concluded that the Leu-enkephalin D-analog under study acts as a morphine agonist and reveals a much higher affinity for rat brain opiate receptors than does Leu- or Met-enkephalin. This makes it a useful tool for study of the enkephalin reception under normal and pathological conditions.
Download full-text PDF |
Source |
---|
J Chem Inf Model
January 2025
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States.
It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:
Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.
The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including S-GTPγS functional and cAMP based assays.
View Article and Find Full Text PDFExpert Opin Ther Pat
January 2025
Department of Pharmaceutical and Biomedical Sciences, Rudolph H. Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA.
Introduction: Opioids have served as a cornerstone in pain management for decades. However, the emergence of increasingly potent synthetic analogs brings forth a range of side effects, including respiratory depression, tolerance, dependence, constipation, and, more importantly, the development of severe and debilitating opioid use disorder (OUD). Search for therapeutics to mitigate OUD has been challenging and this has called for novel approaches that include design of small molecules targeting neuronal circuits involved in addiction (opioid, dopamine, serotonin, norepinephrine, and glutamate receptors, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!