The teichuronic acid of Bacillus licheniformis A.T.C.C. 9945 grown under phosphate limitation was isolated from the cell walls and purified by ion-exchange and Sephadex chromatography. The detailed structure of the polysaccharide was established by methylation analysis, periodate oxidation and partial acid hydrolysis. The polymer is composed of tetrasaccharide repeating units with the structure [GlcA beta(1 leads to 4)GlcA beta(1 leads to 3)GalNAc beta(1 leads to 6)GalNAc alpha(1 leads to 4)n. 13C n.m.r. analysis has confirmed most of the structural features of the polysaccharide and, in particular, the anomeric configurations and linkage positions of substituents. The teichuronic acid from glucose-limited cells was identical with that from cells grown under phosphate limitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1162220 | PMC |
http://dx.doi.org/10.1042/bj1910305 | DOI Listing |
Synth Syst Biotechnol
June 2022
Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
Extracellular polymeric substances (EPSs) are extracellular macromolecules in bacteria, which function in cell growth and show potential for mechanism study and biosynthesis application. However, the biosynthesis mechanism of EPS is still not clear. We herein chose CGMCC 2876 as a target strain to investigate the EPS biosynthesis.
View Article and Find Full Text PDFBiochemistry (Mosc)
April 2021
All-Russian Collection of Microorganisms (VKM), Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
Rathayibacter sp. VKM Ac-2759 (family Microbacteriaceae, class Actinobacteria) contains two glycopolymers in the cell wall. The main chain of rhamnan, glycopolymer 1, is built from the repeating tetrasaccharide units carrying terminal arabinofuranose residues at the non-reducing end, →3)-α-[α-D-Araf-(1→2)]-D-Rhap-(1→2)-α-D-Rhap-(1→3)-α-D-Rhap-(1→2)-α-D-Rhap-(1→.
View Article and Find Full Text PDFCarbohydr Res
January 2021
All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
The cell wall of Rathayibacter caricis VKM Ac-1799 (family Microbacteriaceae, class Actinobacteria) was found to contain both neutral and acidic glycopolymers. The first one is D-rhamnopyranan with main chain →2)-α-D-Rhap-(1 → 3)-α-D-Rhap-(1→, where a part of 2-substituted residues bears as a side-chain at position 3 α-D-Manp residues or disaccharides α-D-Araf-(1→2)-α-D-Manp-(1 → . The second polymer is a teichuronic acid with a branched repeating units composed of seven monosaccharides →4)-α-[β-D-Manp-(1 → 3)]-D-Glcp-(1 → 4)-β-D-GlcpA-(1 → 2)-β-[4,6Pyr]-D-Manp-(1 → 4)-β-L-Rhap-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1 → .
View Article and Find Full Text PDFJ Org Chem
December 2020
Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States.
Cesium carbonate-mediated anomeric O-alkylation of various protected 2-azido-2-deoxy-d-mannoses with primary triflate electrophiles afforded corresponding 2-azido-2-deoxy-β-mannosides in good yields and excellent anomeric selectivity. In addition, 1,3-dibromo-5,5-dimethylhydantoin was found to be the optimal oxidant for preparation of those 2-azido-2-deoxy-d-mannoses from their corresponding thioglycosides. The utilization of this method was demonstrated in the synthesis of a tetrasaccharide fragment of teichuronic acid containing -acetyl-β-d-mannosaminuronic acid (ManNAcA).
View Article and Find Full Text PDFCurr Issues Mol Biol
September 2021
Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
The cell wall of is a rigid structure on the outside of the cell that forms the first barrier between the bacterium and the environment, and at the same time maintains cell shape and withstands the pressure generated by the cell's turgor. In this review, the chemical composition of peptidoglycan, teichoic and teichuronic acids, the polymers that comprise the cell wall, and the biosynthetic pathways involved in their synthesis will be discussed, as well as the architecture of the cell wall. has been the first bacterium for which the role of an actin-like cytoskeleton in cell shape determination and peptidoglycan synthesis was identified and for which the entire set of peptidoglycan synthesizing enzymes has been localised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!