The hormone combination epinephrine + diiodotyrosine inhibited the growth of Tetrahymena cells on first exposure, but stimulated it markedly on re-exposure. It appears that amplification of the receptor by the hormone does take place at the first encounter, regardless of whether the response of the cells was positive or negative. The amplifying effect persists over several generations. The intensity of stimulation by the second exposure was directly related with the duration of the first one. Prolongation of the first exposure accounted for a switch-over from negative to positive influence.
Download full-text PDF |
Source |
---|
J Fluoresc
January 2025
Department of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, 621112, India.
By a simple condensation reaction, the receptor with anthraquinone moiety was synthesized and its sensing properties were explored in the anion sensing studies via colorimetric, UV-vis studies, fluorescence studies, and DFT calculations. The synthesized receptor senses both acetate and hypochlorite ions in DMSO medium. By the addition of all anions into the receptor the colour change was observed from pink to light purple colour for acetate ion and pink to light blue for hypochlorite ion.
View Article and Find Full Text PDFMol Biol Rep
January 2025
College of Life Sciences, Liaoning Normal University, Dalian, Liaoning, 116029, China.
Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.
Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.
Acta Neuropathol
January 2025
Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.
View Article and Find Full Text PDFElife
January 2025
Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany.
Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are age-related diseases characterized by bone marrow (BM) dysfunction and an increased risk of developing acute leukemia. While there is growing evidence highlighting the crucial role of the BM microenvironment (BMME) in MDS, the specific influence of inflammation on BMME changes, as well as the potential benefits of targeting cytokines therapeutically, remain to be elucidated. We previously found interleukin-1 (IL-1) to be a driver of aging phenotypes of BMME and hematopoietic stem and progenitor cells (HSPCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!