The proton-translocating ATPase (F1-F0) of oxidative phosphorylation (ATP phosphohydrolase, EC 3.6.1.3) is coded for by a set of structural genes comprising the unc operon in Escherichia coli. We have analyzed several new transducing phages and plasmids carrying various lengths of the DNA segments of the unc operon by complementation assay using 14 new unc- mutants and representatives of previously described strains which were made available to us. Transducing phages carrying parts of the unc gene cluster were isolated: lambda uncA-9 and lambda glmS phages converted only some of the unc- mutants to the Unc+, as determined by complementation assays. A new hybrid plasmid (pMCR533) carrying part of the unc operon was constructed by inserting the HindIII fragment of lambda asn-5 DNA (a phage carrying the entire unc operon) into the unique HindIII site of pBR322. This plasmid transformed eight unc- strains to Unc+, including uncB402 and uncA401, but did not complement uncD11 or four other strains. Two minichromosomes which carry the E. coli replication origin were also tested: plasmid pNH05 transformed the uncB402 but not the uncA401 strain to Unc+, whereas plasmid pMCF1 transformed none of the mutants tested. Analysis of the DNAs from these transducing phages and plasmids with restriction endonucleases suggested that all of the structural genes for the F1-F0 complex are localized within a DNA segment of approximately 4.5 megadaltons containing two EcoRI sites. The approximate locations of the unc- mutations were mapped on this DNA segment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC350429 | PMC |
http://dx.doi.org/10.1073/pnas.77.12.7005 | DOI Listing |
Nat Commun
April 2024
Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality.
View Article and Find Full Text PDFNat Microbiol
November 2022
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genus Variovorax via an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect the Variovorax auxin degradation locus to define the genes iadDE as necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference.
View Article and Find Full Text PDFGenetics
February 2022
Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan.
Caenorhabditis elegans benefits from a large set of tools for genome manipulation. Yet, the precise single-copy insertion of very large DNA constructs (>10 kb) and the generation of inversions are still challenging. Here, we adapted the phiC31 integrase system for C.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
March 2022
Center for Gastrointestinal Biology and Disease, Chapel Hill, North Carolina; Department of Microbiology and Immunology, Chapel Hill, North Carolina; Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Electronic address:
Background & Aims: The inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis, are caused in part by aberrant immune responses to resident intestinal bacteria. Certain dietary components, including carbohydrates, are associated with IBDs and alter intestinal bacterial composition. However, the effects of luminal carbohydrates on the composition and colitogenic potential of intestinal bacteria are incompletely understood.
View Article and Find Full Text PDFJ Bacteriol
April 2021
Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
Mycobacteria possess Mce transporters that import lipids and are thought to function analogously to ATP-binding cassette (ABC) transporters. However, whereas ABC transporters import substrates using a single solute-binding protein (SBP) to deliver a substrate to permease proteins in the membrane, mycobacterial Mce transporters have a potential for six SBPs (MceA to MceF) working with a pair of permeases (YrbEA and YrbEB), a cytoplasmic ATPase (MceG), and multiple Mce-associated membrane (Mam) and orphaned Mam (Omam) proteins to transport lipids. In this study, we used the model mycobacterium to study the requirement for individual Mce, Mam, and Omam proteins in Mce4 transport of cholesterol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!