Epstein-Barr virus (EBV) originating from Burkitt's lymphoma (P3HR-1 and CC34-5), nasopharyngeal carcinoma (M-ABA), transfusion mononucleosis (B95-8), and a patient with acute myeloblastic leukemia (QIMR-WIL) was isolated from virus-carrying lymphoid cell lines after induction with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Viral DNA was analyzed by partial denaturation mapping and by use of the restriction endonucleases EcoRI, HindIII, and SalI and separation of fragments in 0.4% agarose. By using the restriction enzyme data of B95-8 (EBV) and W91 (EBV) obtained by Given and Kieff (D. Given and E. Kieff, J. Virol. 28:524-542, 1978), maps were established for the other virus strains. Comigrating fragments were assumed to be identical or closely related among the different strains. Fragments of different strains migrating differently were isolated, purified, radioactively labeled, and mapped by hybridization against blots of separated viral fragments. The results were as follows. (i) All strains studied were closely related. (ii) The number of internal repeats was variable among and within viral strains. (iii) B95-8 (EBV) was the only strain with a large deletion of about 12,000 base pairs at the right-hand side of the molecule. At the same site, small deletions of about 400 to 500 base pairs were observed in P3HR-1 (EBV) and M-ABA (EBV) DNA. (iv) P3HR-1 (EBV), the only nontransforming EBV strain, had a deletion of about 3,000 to 4,000 base pairs in the long unique region adjacent to the internal repeats carrying a HindIII site. (v) Small inserted sequences of 150 to 400 base pairs were observed in M-ABA (EBV) and B95-8 (EBV) at identical sites in the middle of the long unique region. (vi) Near this site, an insertion of about 1,000 base pairs was found in P3HR-1 (EBV) DNA. (vii) The cleavage patterns of P3HR-1 virus DNA and the results of blot hybridizations with P3HR-1 virus fragments are not conclusive and point to the possibility that in addition to the normal cleavage pattern some viral sequences may be arranged differently. Even though it is possible that small differences in the genome organization may have significant biological effects, the great similarity among different EBV strains does not favor the hypothesis that disease-specific subtypes exist.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC288854 | PMC |
http://dx.doi.org/10.1128/JVI.35.3.603-618.1980 | DOI Listing |
Sports Biomech
January 2025
Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sports, University of Porto, Porto, Portugal.
The interplay between individual capacities and group performance provides insights for different tasks and contexts. So far, little is known about the individual capacities of base and top gymnasts and mechanical efficiency during pair tasks of Acrobatic Gymnastics. This work aims to investigate: (1) the effect of the pair experience in the mechanical efficiency during a pair task; (2) the effect of the individual training experience in the gymnasts' individual capacities, and (3) the contribution of individual capacities and pair mechanical efficiency to the performance of a partner-assisted flight task.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Ionis Pharmaceuticals, Inc., 2855 Gazelle Ct., Carlsbad, CA 92010. Electronic address:
Complexes formed between aluminum cluster molecules that adopt a Ɛ-Al-Keggin structure and antisense oligonucleotides were observed as new impurity peaks during drug product stability testing. The Ɛ-Al-Keggin molecules were determined to be artifacts of the analysis, originating from contact between antisense oligonucleotide drug product solution and aluminum weigh boats used to prepare the analytical sample solutions The presence of the Ɛ-Al-Keggin molecules was confirmed through synthesis of the Keggin molecule through an established route and subsequent spiking studies. Binding affinity studies revealed that the Ɛ-Al-Keggin bound to oligonucleotide sequences of various lengths (10 to 20 bases) and base compositions, though there is some evidence for preferential binding to 5-methylcytosine-containing sequences.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Science Education and Research Bhopa;, Chemistry, IISER Bhopal, Chemistry, #229,, Academic Building #2, Bhopal bypass road, Bhauri, 462066, Bhopal, INDIA.
Polymerases erroneously incorporate Guanine-Thymine (dG•dT) mismatches in genomic DNA that further evades repair by transient sampling of tautomeric/ionic states compromising fidelity of repairing dG•dT mismatches. In conjunction, significant frequency of ribose (mis)incorporation in duplex DNA permits for misincorporated-mismatch in the genome. Ribose incorporated G(rG) mismatched with T(rG•dT) is the most stable across all misincorporated-mismatch calling into question the conformational consequences of the ribose sugar in addition to the mismatch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!